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1 Introduction

The definition of what is meant by statistics and statistical analysis has changed considerably over the last few

decades. Here are two contrasting definitions of what statistics is, from eminent professors in the field, some 60+

years apart:

"Statistics is the branch of scientific method which deals with the data obtained by counting or measuring

the properties of populations of natural phenomena. In this definition 'natural phenomena' includes all the

happenings of the external world, whether human or not." Professor Maurice Kendall, 1943, p2 [MK1]

"Statistics is: the fun of finding patterns in data; the pleasure of making discoveries; the import of deep

philosophical questions; the power to shed light on important decisions, and the ability to guide

decisions..... in business, science, government, medicine, industry..." Professor David Hand [DH1]

As these two definitions indicate, the discipline of statistics has moved from being grounded firmly in the world

of measurement and scientific analysis into the world of exploration, comprehension and decision-making. At the

same time its usage has grown enormously, expanding from a relatively small set of specific application areas

(such as design of experiments and computation of life insurance premiums) to almost every walk of life. A

particular feature of this change is the massive expansion in information (and misinformation) available to all

sectors and age-groups in society. Understanding this information, and making well-informed decisions on the

basis of such understanding, is the primary function of modern statistical methods.

Our objective in producing this Handbook is to be comprehensive in terms of concepts and techniques (but not

necessarily exhaustive), representative and independent in terms of software tools, and above all practical in

terms of application and implementation. However, we believe that it is no longer appropriate to think of a

standard, discipline-specific textbook as capable of satisfying every kind of new user need. Accordingly, an

innovative feature of our approach here is the range of formats and channels through which we disseminate the

material — web, ebook and print. A major advantage of the electronic formats is that the text can be embedded

with internal and external hyperlinks (shown underlined). In this Handbook we utilize both forms of link, with

external links often referring to a small number of well-established sources, including MacTutor for bibliographic

information and a number of other web resources, such as Eric Weisstein's Mathworld and the statistics page of

Wikipedia, that provide additional material on selected topics. 

The treatment of topics in this Handbook is relatively informal, in that we do not provide mathematical proofs for

much of the material discussed. However, where it is felt particularly useful to clarify how an expression arises,

we do provide simple derivations. More generally we adopt the approach of using descriptive explanations and

worked examples in order to clarify the usage of different measures and procedures. Frequently convenient

software tools are used for this purpose, notably SPSS/PASW, The R Project, MATLab and a number of more

specialized software tools where appropriate.

Just as all datasets and software packages contain errors, known and unknown, so too do all books and websites,

and we expect that there will be errors despite our best efforts to remove these! Some may be genuine errors or

misprints, whilst others may reflect our use of specific versions of software packages and their documentation.

Inevitably with respect to the latter, new versions of the packages that we have used to illustrate this Handbook

will have appeared even before publication, so specific examples, illustrations and comments on scope or

restrictions may have been superseded. In all cases the user should review the documentation provided with the

https://mathshistory.st-andrews.ac.uk/Biographies/
https://mathworld.wolfram.com/
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistics
https://www.ibm.com/products/spss-statistics
https://www.r-project.org/
https://www.mathworks.com/products/matlab/
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software version they plan to use, check release notes for changes and known bugs, and look at any relevant

online services (e.g. user/developer forums and blogs on the web) for additional materials and insights.

The interactive web, ePUB and PDF versions of this Handbook provide color images and active hyperlinks, and

may be accessed via the associated Internet site: https://www.statsref.com. The contents and sample sections of

the PDF version may also be accessed from this site. In all cases the information is regularly updated. The

Internet is now well established as society’s principal mode of information exchange, and most aspiring users of

statistical methods are accustomed to searching for material that can easily be customized to specific needs. Our

objective for such users is to provide an independent, reliable and authoritative first port of call for conceptual,

technical, software and applications material that addresses the panoply of new user requirements. 

Readers wishing to obtain a more in-depth understanding of the background to many of the topics covered in this

Handbook should review the Suggested Reading topic.  

References

[DH1] D Hand (2009) President of the Royal Statistical Society (RSS), RSS Conference Presentation, November 2009

[MK1] Kendall M G, Stuart A (1943) The Advanced Theory of Statistics: Volume 1, Distribution Theory. Charles Griffin & Company,

London. First published in 1943, revised in 1958 with Stuart

https://www.statsref.com
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1.1 How to use this Handbook

This Handbook is designed to provide a wide-ranging and comprehensive, though not exhaustive, coverage of

statistical concepts and methods. Unlike a Wiki the Handbook has a more linear flow structure, and in principle

can be read from start to finish. In practice many of the topics, particularly some of those described in later parts

of the document, will be of interest only to specific users at particular times, but are provided for completeness.

Users are recommended to read the initial four topics — Introduction, Statistical Concepts, Statistical Data and

Descriptive Statistics, and then select subsequent sections as required. 

Navigating around the PDF, ePUB or web versions of this Handbook is straightforward, but to assist this process a

number of special facilities have been built into the design to make the process even easier. These facilities

include:

· Tests Index — this is a form of 'how to' index, i.e. it does not assume that the reader knows the name of the

test they may need to use, but can navigate to the correct item by the index description

· Reference links and bibliography — within the text all books and articles referenced are linked to the full

reference at the end of the topic section (in the References subsection) in the format [XXXn] and in the

complete bibliography at the end of the Handbook

· Hyperlinks — within the document there are two types of hyperlink: (i) internal hyperlinks — when clicking on

these links you will be directed to the linked topic within this Handbook; (ii) external hyperlinks — these

provide access to external resources for which you need an active internet connection. When the external links

are clicked the appropriate topic is opened on an external website such as Wikipedia

· Search facilities — the web, ePUB and PDF versions of this Handbook facilitate free text search, so as long as

you know roughly what you are looking for, you should be able to find it using this facility

https://en.wikipedia.org/wiki/Statistics
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1.2 Intended audience and scope

Ian Diamond, Statistician and at the time Chief Executive of the UK's Economic and Social Research Council

(ESRC), gave the following anecdote (which I paraphrase) during a meeting in 2009 at the Royal Statistical Society

in London: 

"Some time ago I received a brief email from a former student. In it he said: 

... your statistics course was the one I hated most at University and was more than glad when it was over....

but in my working career it has been the most valuable of any of the courses I took... ! " 

So, despite its challenges and controversies, taking time to get to grips with statistical concepts and techniques is

well worth the effort.

With this perspective in mind, this Handbook has been designed to be accessible to a wide range of readers —

from undergraduates and postgraduates studying statistics and statistical analysis as a component of their specific

discipline (e.g. social sciences, earth sciences, life sciences, engineers), to practitioners and professional

research scientists. However, it is not intended to be a guide for mathematicians, advanced students studying

statistics or for professional statisticians. For students studying for academic or professional qualifications in

statistics, the level and content adopted is that of the Ordinary and Higher Level Certificates of the Royal

Statistical Society (RSS), training programmes offered until 2017. Much of the material included in this Handbook

is also appropriate for the Graduate Diploma level also, although we have not sought to be rigorous or excessively

formal in our treatment of individual statistical topics, preferring to provide less formal explanations and

examples that are more approachable by the non-mathematician with links and references to detailed source

materials for those interested in derivation of the expressions provided. 

The Handbook is much more than a cookbook of formulas, algorithms and techniques. Its aim is to provide an

explanation of the key techniques and formulas of statistical analysis, often using examples from widely available

software packages. It stops well short, however, of attempting a systematic evaluation of competing software

products. A substantial range of application examples is provided, but any specific selection inevitably illustrates

only a small subset of the huge range of facilities available. Wherever possible, examples have been drawn from

non-academic and readily reproducible sources, highlighting the widespread understanding and importance of

statistics in every part of society, including the commercial and government sectors. 

References

Royal Statistical Society: Training section: https://rss.org.uk/training-events/training/ 

https://www.rss.org.uk/
https://www.rss.org.uk/
https://rss.org.uk/training-events/training/
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1.3 Suggested reading

There are a vast number of books on statistics — Amazon alone lists 10,000+ "professional and technical" works

with statistics in their title. There is no single book or website on statistics that meets the need of all levels and

requirements of readers, so the answer for many people starting out will be to acquire the main 'set books'

recommended by their course tutors and then to supplement these with works that are specific to their

application area. Every topic and subtopic in this Handbook almost certainly has at least one entire book devoted

to it, so of necessity the material we cover can only provide the essential details and a starting point for deeper

understanding of each topic. As far as possible we provide links to articles, web sites, books and software

resources to enable the reader to pursue such questions as and when they wish.

Most statistics texts do not make for easy or enjoyable reading! In general they address difficult technical and

philosophical issues, and many are demanding in terms of their mathematics. Others are much more approachable

— these books include 'classic' undergraduate text books such as Feller (1950, [FEL1]), Mood and Graybill (1950,

[MOO1]), Hoel (1947, [HOE1]), Adler and Roessler (1960, [ADL1]), Brunk (1960, [BRU1]), Snedecor and Cochrane

(1937, [SNE1]) and Yule and Kendall (1950, [YUL1]) — the dates cited in each case are when the books were

originally published; in most cases these works then ran into many subsequent editions and though most are now

out-of-print some are still available. A more recent work, available from the American Mathematical Society and

also as a free PDF, is Grinstead and Snell's (1997) An Introduction to Probability [GRI1]. Still in print, and of

continuing relevance today, is Huff (1954, [HUF1]) "How to Lie with Statistics" which must be the top selling

statistics book of all time. A more recent book, with a similar focus, is Blastland and Dilnot's "The Tiger that

Isn't" [BLA1], which is full of examples of modern-day use and misuse of statistics. Another delightful, lighter

weight book that remains very popular, is Gonik and Smith's "Cartoon Guide to Statistics" (one of a series of such

cartoon guides by Gonik and co-authors, [GON1]). A very useful quick guide is the foldable free PDF format

leaflet "Probability & Statistics, Facts and Formulae" published by the UK Maths, Stats and OR Network [UKM1].

The free Statistics Guide for Lawyers (PDF) is a highly recommended resource (RSS and ICCA) for both lawyers and

non-lawyers alike. Both are also available via the www.statref.com website.

Essential reading for anyone planning to use the free and remarkable "R Project" statistical resource is Crawley's

"The R Book" (2007, 2015 [CRA1]) and associated data files; and for students undertaking an initial course in

statistics using SPSS, Andy Field's "Discovering Statistics Using SPSS" provides a gentle introduction with many

worked examples and illustrations [FIE1]. Both Field and Crawley's books are large — around 900 pages in each

case. Data obtained in the social and behavioral sciences do not generally conform to the strict requirements of

traditional (parametric) inferential statistics and often require the use of methods that relax these requirements.

These so-called nonparametric methods are described in detail in Siegel and Castellan's widely used text

"Nonparametric Statistics for the Behavioral Sciences" (1998, [SIE1]) and Conover's "Practical Nonparametric

Statistics" (1999, [CON1]).

A key aspect of any statistical investigation is the use of graphics and visualization tools, and although technology

is changing this field Tufte's "The Visual Display of Quantitative Information" [TUF1] should be considered as

essential reading, despite its origins in the 1980s and the dramatic changes to visualization possibilities since its

publication. Professor Hans Rosling's 2010 programme broadcast by the BBC on the Joy of Stats, should be a 'must

view' video on visualization.

With a more practical, applications focus, readers might wish to look at classics such as Box et al. (1978, 2005,

[BOX1]) "Statistics for Experimenters" (highly recommended, particularly for those involved in industrial

https://www.statsref.com/HTML/QuickGuide.PDF
https://www.statsref.com/ICCA-RSS-guide.pdf
http://www.statref.com
https://www.r-project.org/
http://www.bio.ic.ac.uk/research/mjcraw/therbook/
https://www.ibm.com/products/spss-statistics
https://www.edwardtufte.com/tufte/books_vdqi
https://www.gapminder.org/videos/the-joy-of-stats/
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processes), Sokal and Rohlf (1995, [SOK1]) on Biometrics, and the now rather dated book on Industrial Production

edited by Davies (1961, [DAV1]) and partly written by the extraordinary George Box whilst a postgraduate student

at University College London. Box went on to a highly distinguished career in statistics, particularly in industrial

applications, and is the originator of many statistical techniques and author of several groundbreaking books. He

not only met and worked with R A Fisher but later married one of Fisher's daughters! Crow et al. (1960, reprinted

in 2003, [CRO1]) published a concise but exceptionally clear "Statistics Manual" designed for use by the US Navy,

with most of its examples relating to ordnance — it provides a very useful and compact guide for non-statisticians

working in a broad range of scientific and engineering fields. 

Taking a further step towards more demanding texts, appropriate for mathematics and statistics graduates and

post-graduates, we would recommend Kendall's Library of Statistics [KEN1], a multi-volume authoritative series

each volume of which goes into great detail on the area of statistics it focuses upon. For information on

statistical distributions we have drawn on a variety of sources, notably the excellent series of books by Johnson

and Kotz [JON1], [JON2] originally published in 1969/70. The latter authors are also responsible for the

comprehensive but extremely expensive nine volume "Encyclopedia of Statistical Sciences" (1998, 2006, [KOT1]).

A much more compact book of this type, with very brief but clear descriptions of around 500 topics, is the

"Concise Encyclopedia of Statistics" by Dodge (2002, [DOD1]).

With the rise of the Internet, web resources on statistical matters abound. However, it was the lack of a single,

coherent and comprehensive Internet resource that was a major stimulus to the current project. The present

author's book/ebook/website www.spatialanalysisonline.com has been extremely successful in providing

information on Geospatial Analysis to a global audience, but its focus on 2- and 3-dimensional spatial problems

limits its coverage of statistical topics. However, a significant percentage of Internet search requests that lead

users to this site involve queries about statistical concepts and techniques, suggesting a broader need for such

information in a suitable range of formats, which is what this Handbook attempts to provide. 

A number of notable web-based resources providing information on statistical methods and formulas should be

mentioned. The first is Eric Weisstein's excellent Mathworld site, which has a large technical section on

probability and statistics. Secondly there is Wikipedia (Statistics section) — this is a fantastic resource, but is

almost by definition not always consistent or entirely independent. This is particularly noticeable for topics whose

principal or original authorship reflects the individual's area of specialism: social science, physics, biological

sciences, mathematics, economics etc., and in some instances their commercial background (e.g. for specific

software packages). Both Mathworld and Wikipedia provide a topic-by-topic structure, with little or no overall

guide or flow to direct users through the maze of topics, techniques and tools, although Wikipedia's core

structure is very well defined. This contrasts with the last two of our recommended websites: the NIST/SEMATECH

online Engineering Statistics e-Handbook, and the UCLA Statistics Online Computational Resource (SOCR). These

NIST resources are much closer to our Handbook concept, providing information and guidance on a broad range of

topics in a lucid, structured and discursive manner. The UCLA Statistics Online Computational Resource project

made extensive use of interactive Java applets to deliver web-enabled statistical tools, although these are now

deprecated. The present Handbook references a wider range of software tools to illustrate its materials, including

Dataplot, R, SPSS, Excel and XLStat, MATLab, Minitab, SAS/STAT and many others. This enables us to provide a

broader ranging commentary on the toolsets available, and to compare the facilities and algorithms applied by

the different implementations. Throughout this Handbook we make extensive reference to functions and

examples available in R, MATLab and SPSS in particular.

https://mathshistory.st-andrews.ac.uk/Biographies/Box/
https://mathshistory.st-andrews.ac.uk/Biographies/Fisher/
https://www.spatialanalysisonline.com
https://mathworld.wolfram.com/topics/ProbabilityandStatistics.html
http://en.wikipedia.org/wiki/Statistics
https://mathworld.wolfram.com/topics/ProbabilityandStatistics.html
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistics
https://www.itl.nist.gov/div898/handbook/
https://socr.umich.edu/HTML5/
https://socr.ucla.edu/SOCR.html
https://www.itl.nist.gov/div898/software/dataplot/homepage.htm
https://www.r-project.org/
https://www.ibm.com/products/spss-statistics
https://office.microsoft.com/en-us/excel/
https://www.xlstat.com
https://www.mathworks.com/
https://www.minitab.com
https://www.sas.com/en_us/software/stat.html
https://www.r-project.org/
https://www.mathworks.com/
https://www.ibm.com/products/spss-statistics
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1.4 Notation and symbology

In order to clarify the expressions used here and elsewhere in the text, we use the notation shown in the table

below. Italics are used within the text and formulas to denote variables and parameters. Typically in statistical

literature, the Roman alphabet is used to denote sample variables and sample statistics, whilst Greek letters are

used to denote population measures and parameters. An excellent and more broad-ranging set of mathematical

and statistical notation is provided on the Wikipedia site.

Notation used in this Handbook

Item Description

[a,b]
A closed interval of the Real line, for example [0,1] means the infinite set of all values between 0 and 1, including 0
and 1

(a,b)
An open interval of the Real line, for example (0,1) means the infinite set of all values between 0 and 1, NOT
including 0 and 1. This should not be confused with the notation for coordinate pairs, (x,y), or its use within bivariate
functions such as f(x,y) — the meaning should be clear from the context

{xi}
A set of n values x1, x2, x3, … xn, typically continuous interval- or ratio-scaled variables in the range (-∞,∞) or [0,∞).

The values may represent measurements or attributes of distinct objects, or values that represent a collection of
objects (for example the population of a census tract)

{Xi} An ordered set of n values X1, X2, X3, … Xn, such that Xi≤Xi+1 for all i

X,x The use of bold symbols in expressions indicates matrices (upper case) and vectors (lower case)

{fi}

A set of k frequencies (k£n), derived from a dataset {xi}. If {xi} contains discrete values, some of which occur

multiple times, then {fi} represents the number of occurrences or the count of each distinct value. {fi} may also

represent the number of occurrences of values that lie in a range or set of ranges, {ri}. If a dataset contains n values,

then the sum ∑fi=n. The set {fi} is often written as f(xi). If {fi} is regarded as a set of weights (for example attribute

values) associated with the {xi}, it may be written as the set {wi} or w(xi). If a set of frequencies, {fi}, have been

standardized by dividing each value fi by their sum, ∑fi then {fi} may be regarded as a set of estimated probabilities

and ∑fi=1



Summation symbol, e.g. x1+x2+x3+… +xn. If no limits are shown the sum is assumed to apply to all subsequent

elements, otherwise upper and/or lower limits for summation are provided

Ç Set intersection. The notation P(AÇB) is used to indicate the probability of A and B 

È Set union. The notation P(AÈB) is used to indicate the probability of A or B

Δ Set symmetric difference. The set of objects in A that are not in B plus the set of objects in B that are not in A

ò

Integration symbol. If no limits are shown the sum is assumed to apply to all elements, otherwise upper and/or lower
limits for integration are provided



Product symbol, e.g. x1∙x2∙x3∙ … ∙xn. If no limits are shown the product is assumed to apply to all subsequent

elements, otherwise upper and/or lower limits for multiplication are provided

^
Hat or carat symbol: used in conjunction with Greek symbols (directly above) to indicate a value is an estimate
of a parameter or the true population value

®

Tends to, typically applied to indicate the limit as a variable tends to 0 or ∞

https://en.wikipedia.org/wiki/Table_of_mathematical_symbols
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Item Description

Solidus or overbar symbol: used directly above a variable to indicate a value is the mean of a set of sample values

~

Two meanings apply, depending on the context: (i) "is distributed as", for example y~N(0,1) means the variable y
has a distribution that is Normal with a mean of 0 and standard deviation of 1; (ii) negation, as in ~A means NOT A,
or sometimes referred to as the complement of A. Note that the R language uses this symbol when defining
regression models

!

Factorial symbol. z=n! means z=n(n-1)(n-2)…1. n>=0. Note that 0! is defined as 1. Usually applied to integer values
of n. May be defined for fractional values of n using the Gamma function. Note that for large n Stirling's
approximation may be used. R: factorial(n) — computes n!; if a range is specified, for example 1:5 then all the
factorials from 1 to 5 are computed

n

r

 

 

 

Binomial expansion coefficients, also written as nCr, or similar, and shorthand for

n!/[(n-r)!r!]. 

 ‘Equivalent to’ symbol

 ‘Approximately equal to’ symbol

µ

Proportional to



‘Belongs to’ symbol, e.g. xÎ[0,2] means that x belongs to/is drawn from the set of all values in the closed interval
[0,2]; xÎ{0,1} means that x can take the values 0 and 1



Less than or equal to, represented in the text where necessary by <= (provided in this form to support display
by some web browsers)



Greater than or equal to, represented in the text where necessary by >= (provided in this form to support
display by some web browsers)

x
 

 

Floor function. Interpreted as the largest integer value not greater than x. Sometimes, but not always,
implemented in software as int(x), where int() is the integer part of a real valued variable

x
 

 

Ceiling function. Interpreted as the smallest integer value not less than x. Sometimes, but not always,
implemented in software as int(x+1), where int() is the integer part of a real valued variable

A|B "given", as in P(A|B) is the probability of A given B or A conditional upon B

References

Wikipedia: Table of mathematical symbols: https://en.wikipedia.org/wiki/Table_of_mathematical_symbols  

https://en.wikipedia.org/wiki/Table_of_mathematical_symbols
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1.5 Historical context

Statistics is a relatively young discipline — for discussions on the history of statistics see Stigler (1986, [STI1]) and

Newman (1960,[NEW1]). Much of the foundation work for the subject has been developed in the last 150 years,

although its beginnings date back to the 13th century involving the expansion of the series (p+q)n, for

n=0,1,2,3.... For example, with n=2, we have p2+2pq+q2, so the constants in the expression (known as the

coefficients) are 1,2,1 and with n=3, we have p3+3p2q+3pq2+q3 with coefficients 1,3,3,1. The coefficients of this

'binomial' expansion were found to exhibit a well defined pattern (illustrated below) known as Pascal's triangle.

Each coefficient can be obtained as the sum of the two immediately above in the diagram, as indicated.

Coefficients of the Binomial expansion

Pascal used this observation to produce a formula for the coefficients, which he noted was the same as the

formula for the number of different combinations (or arrangements) of r events from a set of n (r=0,1,...n). ,

usually denoted:

 or n
r

n
C

r

 

 

 

This formula is typically expanded as:

!
=

( )! !
n

r
n

C
n r r

Hence with n=5, and noting that 0! is defined as 1, we have for r=[0,1,2,3,4,5] the values [1,5,10,10,5,1] as per

Pascal's triangle, above. What this formula for the coefficients says, for example, is that are 5 different ways of

arranging one p and four q's. These arrangements, or possible different combinations, are:

pqqqq, qpqqq, qqpqq, qqqpq, and qqqqp

https://www-history.mcs.st-and.ac.uk/Biographies/Pascal.html
https://www-history.mcs.st-and.ac.uk/Biographies/Pascal.html
https://www-history.mcs.st-and.ac.uk/Biographies/Pascal.html
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and exactly the same is true if we took one q and four p's. There is only one possible arrangement of all p's or all

q's, but there are 10 possible combinations or sequences if there are 2 of one and 3 of the other. The possible

different combinations are:

ppqqq, qppqq, qqppq, qqqpp, pqpqq, pqqpq, pqqqp, qpqpq, qpqqp, qqpqp

In these examples the order of arrangement is important, and we are interested in all possible combinations. If

the order is not important the number of arrangements would be greater and the formula simplifies to counting

the number of permutations:

!
=

( )!
n

r
n

P
n r

Assuming (p+q)=1 then clearly (p+q)n=1. Jakob Bernoulli's theorem (published in 1713, after his death) states that

if p is the probability of a single event occurring (e.g. a 2 being the result when a six-sided die is thrown), and q

=1-p is the probability of it not occurring (e.g. the die showing any other value but 2) then the probability of the

event occurring at least m times in n trials is the sum of all the terms of (p+q)n starting from the term with

elements including pr where r≥m, i.e.

 

!

! !

n
r n r

r m

n
p q

r n r








So, if a die is thrown 5 times, the expected number of occasions a 2 will occur will be determined by the terms of

the binomial expansion for which p =1/6, and q =1-p = 5/6 ):

0 5 1 4 2 3 3 2 4 1 5 0,5 ,10 ,10 ,5 ,p q p q p q p q p q p q

which in this case give us the set of probabilities (to 3dp): 0.402,0.402,0.161,0.032,0.003,0.000. So the chance

of throwing at least one "2" from 5 throws of an unbiased die is the sum of all the terms from m=1 to 5, i.e.

roughly 60% (59.8%), and the chances of all 5 throws turning up as a 2 is almost zero. Notice that we could also

have computed this result more directly as 1 minus the probability of no twos, which is 1-(1/6)0(5/6)5=1-0.402,

the same result as above.

This kind of computation, which is based on an a priori understanding of a problem in which the various outcomes

are equally likely, works well in certain fields, such as games of chance — roulette, card games, dice games — but

is not readily generalized to more complex and familiar problems. In most cases we do not know the exact chance

of a particular event occurring, but we can obtain an estimate of this assuming we have a fairly large and

representative sample of data. For example, if we collate data over a number of years on the age at which males

and females die in a particular city, then one might use this information to provide an estimate of the probability

that a woman of age 45 resident in that location will die within the next 12 months. This information, which is a

form of a posteriori calculation of probability, is exactly the kind of approach that forms the basis for what are

known as mortality tables, and these are used by the life insurance industry to guide the setting of insurance

premiums. Statisticians involved in this particular field are called actuaries, and their principal task is to analyze

collected data on all manner of events in order to produce probability estimates for a range of outcomes on which

insurance premiums are then based. The collected data are typically called statistics, here being the plural form.

The term statistics in the singular, refers to the science of how best to collect and analyze such data.

https://mathshistory.st-andrews.ac.uk/Biographies/Bernoulli_Jacob/
https://en.wikipedia.org/wiki/Actuarial_science
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Returning to the games of chance examples above, we could approach the problem of determining the probability

that at least one 2 is thrown from 5 separate throws of the die by conducting an experiment or trial. First, we

could simply throw a die 5 times and count the number of times (if any) a 2 was the uppermost face. However,

this would be a very small trial of just one set of throws. If we conducted many more trials, perhaps 1000 or

more, we would get a better picture of the pattern of events. More specifically we could make a chart of the

observed frequency of each type of event, where the possible events are: zero 2s, one 2, two 2s and so on up to

five 2s. In practice, throwing a 6-sided die a very large number of times and counting the frequency with which

each value appears is very time-consuming and difficult. Errors in the process will inevitably creep in: the

physical die used is unlikely to be perfect, in the sense that differences in the shape of its corners and surfaces

may lead some faces to be very slightly more likely to appear uppermost than others; as time goes on the die will

wear, and this could affect the results; the process of throwing a die and the surface onto which the die is

thrown may affect the results; over time we may make errors in the counting process, especially if the process

continues for a very long time... in fact there are very many reasons for arguing that a physical approach is

unlikely to work well. 

As an alternative we can use a simple computer program with a random number generator, to simulate the

throwing of a six-sided die. Although modern random number generators are extremely good, in that their

randomness has been the subject of an enormous amount of testing and research, there will be a very slight bias

using this approach, but it is safe to ignore this at present. In the table below we have run a simple simulation by

generating a random integer number between the values of 1 and 6 a total of 100,000 times. Given that we

expect each value to occur with a probability of 1/6, we would expect each value to appear approximately 16667

times. We can see that in this trial, the largest absolute difference between the simulated or observed

frequency, fo, and the a priori or expected frequency, fe, is 203, which is around 1.2%. 

Face Frequency |Observed-Expected|

1 16741 74

2 16870 203

3 16617 50

4 16635 32

5 16547 120

6 16589 78

This difference is either simply a matter of chance, or perhaps imperfections in the random number algorithm, or

maybe in the simulation program. Some of this uncertainty can be removed by repeating the trial many times or

using a larger number of tests in a single trial, and by checking the process using different software on different

computers with different architectures. In our case we increased the trial run size to 1 million, and found that

the largest percentage difference was 0.35%, suggesting that the random number generator and algorithm being

used were indeed broadly unbiased, and also illustrating the so-called "Law of large numbers" or "Golden

theorem", also due to Bernoulli. Essentially this law states that as the sample size is increased (towards infinity),

the sample average tends to the true 'population' average. In the example of rolling a die, the possible values are

1,2,...6, the average of which is 3.5, so the long term average from a large number of trials should approach 3.5

arbitrarily closely. There are actually two variants of this law commonly recognized, the so-called Weak Law and

the Strong Law, although the differences between these variants are quite subtle. Essentially the Weak Law

https://mathshistory.st-andrews.ac.uk/Biographies/Bernoulli_Jacob/
https://mathworld.wolfram.com/WeakLawofLargeNumbers.html
https://mathworld.wolfram.com/StrongLawofLargeNumbers.html
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allows for a larger (possibly infinite) number of very small differences between the true average and the long

term sampled average, whilst the Strong Law allows just for a finite number of such cases.

This example has not directly told us how likely we are to see one or more 2s when the die is thrown five times.

In this case we have to simulate batches of 5 throws at a time, and count the proportion of these batches that

have one or more 2s thrown. In this case we again compute 100,000 trials, each of which involves 5 throws (so

0.5 million iterations in total) and we find the following results from a sequence of such trials: 59753,

59767,59806,... each of which is very close to the expected value based on the percentage we derived earlier,

more precisely 59812 (59.812%). In general it is unnecessary to manually or programmatically compute such

probabilities for well-known distributions such as the Binomial, since almost all statistical software packages will

perform the computation for you. For example, the Excel function BINOMDIST() could be used. Until relatively

recently statistical tables, laboriously calculated by hand or with the aid of mechanical calculators, were the

principal means of comparing observed results with standard distributions. Although this is no longer necessary

the use of tables can be a quick and simple procedure, and we have therefore included a number of these in the

Resources topic, Distribution tables section, of this Handbook.

A number of observations are worth making about the above example. First, although we are conducting a series

of trials, and using the observed data to produce our probability estimates, the values we obtain vary. So there is

a distribution of results, most of which are very close to our expected (true) value, but in a smaller number of

cases the results we obtain might, by chance, be rather more divergent from the expected frequency. This

pattern of divergence could be studied, and the proportion of trials that diverged from the expected value by

more than 1%, 2% etc. could be plotted. We could then compare an observed result, say one that diverged by 7%

from that expected, and ask "how likely is it that this difference is due to chance?". For example, if there was

less than one chance in 20 (5%) of such a large divergence, we might decide the observed value was probably not

a simple result of chance but more likely that some other factor was causing the observed variation. From the

Law of Large Numbers we now know that the size of our sample or trial is important — smaller samples diverge

more (in relative, not absolute, terms) than larger samples, so this kind of analysis must take into account sample

size. Many real-world situations involve modest sized samples and trials, which may or may not be truly

representative of the populations from which they are drawn. The subject of statistics provides specific

techniques for addressing such questions, by drawing upon experiments and mathematical analyses that have

examined a large range of commonly occurring questions and datasets.

A second observation about this example is that we have been able to compare our trials with a well-defined and

known 'true value', which is not generally the situation encountered. In most cases we have to rely more heavily

on the data and an understanding of similar experiments, in order to obtain some idea of the level of uncertainty

or error associated with our findings. 

A third, and less obvious observation, is that if our trial, experiments and/or computer simulations are in some

way biased or incorrectly specified or incomplete, our results will also be of dubious value. In general it is quite

difficult to be certain that such factors have not affected the observed results and therefore great care is needed

when designing experiments or producing simulations.

Finally, it is important to recognize that a high proportion of datasets are not obtained from well-defined and

controlled experiments, but are observations made and/or collections of data obtained, by third parties, often

government agencies, with a whole host of known and unknown issues relating to their quality and how

representative they are. Similarly, much data is collected on human populations and their behavior, whether this

be medical research data, social surveys, analysis of purchasing behavior or voting intentions. Such datasets are,

https://office.microsoft.com/en-us/excel/
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almost by definition, simply observations on samples from a population taken at a particular point in time, in

which the sampling units (individual people) are not fully understood or 'controlled' and can only loosely be

regarded as members of a well-defined 'population'. 

With the explosion in the availability of scientific data during the latter part of the 18th century and early 19th

century, notably in the fields of navigation, geodesy and astronomy, efforts were made to identify associations

and patterns that could be used to simplify the datasets. The aim was to minimize the error associated with large

numbers of observations by examining the degree to which they fitted a simple model, such as a straight line or

simple curve, and then to predict the behavior of the variables or system under examination based on this

approximation. One of the first and perhaps most notable of these efforts was the discovery of the method of

Least Squares, which Gauss reputedly devised at the age of 18. This method was independently discovered and

developed by a number of other scientists, notably Legendre, and applied in a variety of different fields. In the

case of statistical analysis, least squares is most commonly encountered in connection with linear and non-linear

regression, but it was originally devised simply as the 'best' means of fitting an analytic curve (or straight line) to

a set of data, in particular measurements of astronomical orbits.

During the course of the late 1900s and the first half of the 20th century major developments were made in many

areas of statistics. A number of these are discussed in greater detail in the sections which follow, but of

particular note is the work of a series of scientists and mathematicians working at University College London

(UCL). This commenced in the 1860s with the research of the scientist Sir Francis Galton (a relation of Charles

Darwin), who was investigating whether characteristics of the human population appeared to be acquired or

inherited, and if inherited, whether humankind could be altered (improved) by selective breeding (a highly

controversial scientific discipline, known as Eugenics). The complexity of this task led Galton to develop the

concepts of correlation and regression, which were subsequently developed by Karl Pearson and refined by his

student, G Udny Yule. Yule delivered an influential series of annual lectures on statistics at UCL which became

the foundation of his famous book, An Introduction to the Theory of Statistics [YUL1], first published in 1911.

Another student of Pearson at UCL was a young chemist, William Gosset, who worked for the brewing business,

Guinness. He is best known for his work on testing data that have been obtained from relatively small samples.

Owing to restrictions imposed by his employers on publishing his work under his own name, he used the

pseudonym "Student", from which the well-known "Students t-test" and the t-distribution arise. Also joining UCL

for 10 years as Professor of Eugenics, was R A Fisher, perhaps the most important and influential statistician of

the 20th century. Fisher's contributions were many, but he is perhaps most famous for his work on the Design of

Experiments [FIS1], a field which is central to the conduct of controlled experiments such as agricultural and

medical trials. Also at UCL, but working in a different field, psychology, Charles Spearman was responsible for the

introduction of a number of statistical techniques including Rank Correlation and Factor Analysis. And lastly, but

not least, two eminent statisticians: Austin Bradford Hill, whose work we discuss in the section on statistics in

medical research, attended Pearson's lectures at UCL and drew on many of the ideas presented in developing his

formative work on the application of statistics to medical research; and George Box, developer of much of the

subject we now refer to as industrial statistics. Aspects of his work are included in our discussion of the Design of

Experiments, especially factorial designs.

Substantial changes to the conduct of statistical analysis have come with the rise of computers, automated

monitoring and tracking technologies (e.g. GPS, smartcard systems etc.) and the Internet. The computer has

removed the need for statistical tables and, to a large extent, the need to be able to recall and compute many of

the complex expressions used in statistical analysis. They have also enabled very large volumes of data to be

stored and analyzed, which itself presents a whole new set of challenges and opportunities. To meet some of

https://mathshistory.st-andrews.ac.uk/Biographies/Gauss/
https://mathshistory.st-andrews.ac.uk/Biographies/Legendre/
https://www.ucl.ac.uk/Stats/
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these, scientists such as John Tukey and others developed the concept of Exploratory Data Analysis, or "EDA",

which can be described as a set of visualization tools and exploratory methods designed to help researchers

understand large and complex datasets, picking out significant features and feature combinations for further

study. This field has become one of the most active areas of research and development in recent years, spreading

well beyond the confines of the statistical fraternity, with new techniques such as Data Mining, 3D visualizations,

Interactive dynamic graphics, Exploratory Spatio-Temporal Data Analysis (ESTDA) and a whole host of other

procedures becoming widely used. A further, equally important impact of computational power, we have already

glimpsed in our discussion on games of chance — it is possible to use computers to undertake large-scale

simulations for a range of purposes, amongst the most important of which is the generation of pseudo-probability

distributions for problems for which closed mathematical solutions are not possible or where the complexity of

the constraints or environmental factors make simulation and/or randomization approaches the only viable

option.
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1.6 An applications-led discipline

As mentioned in the previous section, the discipline that we now know as Statistics, developed from early work in

a number of applied fields. It was, and is, very much an applied science. Gambling was undoubtedly one of the

most important early drivers of research into probability and statistical methods and Abraham De Moivre's book,

published in 1718, "The Doctrine of Chance: A method of calculating the probabilities of events in play" [DEM1]

was essential reading for any serious gambler at the time. The book contained an explanation of the basic ideas

of probability, including permutations and combinations, together with detailed analysis of a variety of games of

chance, including card games with delightful names such as Basette and Pharaon (Faro), games of dice, roulette,

lotteries etc. A typical entry in De Moivre's book is as follows:

"Suppose there is a heap of 13 cards of one color [suit], and another heap of 13 cards of another color; what is

the Probability, that taking one Card at a venture [random] out of each heap, I shall take out the two Aces?" He

then goes on to explain that since there is only one Ace in each heap, the separate probabilities are 1/13 and

1/13, so the combined probability (since the cards are independently drawn) is simply:

1 1 1

13 13 169
 

hence the chance of not drawing two Aces is 168/169, or put another way, the odds against drawing two Aces are

168:1 — for gambling, whether the gambler or the gambling house, setting and estimating such odds is vitally

important! De Moivre's book ran into many editions, and it was in the revised 1738 and 1756 editions that De

Moivre introduced a series approximation to the Binomial for large n with p and q not small (e.g. not less than

0.3). These conditions lead to an approximation that is generally known as the Normal distribution. His

motivation for so developing this approximation was that computation of the terms of the Binomial for large

values of n (e.g. 50+, as illustrated below) was extremely tedious and unrealistic to contemplate at that time. 

Binomial distribution, mean = 25

Binomial Distiribution: p=.5, n=50
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https://mathshistory.st-andrews.ac.uk/Biographies/De_Moivre/
https://books.google.co.uk/books?id=3EPac6QpbuMC
https://en.wikipedia.org/wiki/Basset_%28card_game%29
https://en.wikipedia.org/wiki/Faro_%28card_game%29
https://books.google.com/books?id=dyMOAAAAQAAJ&pg
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Furthermore, as n increases the individual events have very small probabilities (with n=500 the maximum

probability for an individual event with p=0.5 is 0.036 — i.e. there is just under 4% chance of seeing exactly 250

heads, say, when 500 tosses of an unbiased coin are made). For this reason one tends to be interested in the

probability of seeing a group or range of values (e.g. 400 or more heads from 500 tosses), rather than any specific

value. Looking at the chart the vertical bars should really be just vertical lines, and as the number of such lines

becomes very large and the interval between events becomes relatively smaller, a continuous smooth bell-like

curve approximation (which is what the Normal distribution provides) starts to make sense (see further, the

Normal distribution).

De Moivre also worked extensively on another topic, mentioned in the previous section, mortality tables. This

work developed following the publication by John Graunt in 1662 of figures on births and deaths in London, and

similar research by Edmund Halley (the astronomer) of birth and deaths data for the City of Breslau (modern day

Wrocław in Poland) between 1687 and 1691 [HAL1]. Halley was interested in using this data in order to "ascertain

the price of annuities upon lives", i.e. to determine the level at which life insurance premiums (or annuities)

might be set. As an illustration, Halley observed that (based on his data) there was only 100:1 chance that a man

in Breslau aged 20 would die in the following 12 months (i.e. before reaching 21), but 38:1 if the man was 50

years old. A diagram derived from the data in Halley's publication of 1693 is shown below. De Moivre included

Halley's data and sample annuity problems and solutions in the 1756 edition of his "Doctrine of Chance" book,

cited above.

A very different application of statistics arose during the 19th century with the development of new forms of

communication, especially the development of telephony and the introduction of manual and then mechanical

exchange equipment. A Danish mathematician, Agner Erlang, working for the Copenhagen Telephone Authority

(KTAS), addressed the important questions of queuing and congestion. Answers were needed to questions such as

"how many operators are needed to service telephone calls for 1000 customers?" and "how many lines are required

https://www-history.mcs.st-and.ac.uk/Biographies/De_Moivre.html
https://en.wikipedia.org/wiki/John_Graunt
https://mathshistory.st-andrews.ac.uk/Biographies/Halley/
https://maps.google.com/maps?f=q&source=s_q&hl=en&q=Wroc%C5%82aw,+Wroclaw,+Lower+Silesia,+Poland&sll=51.107885,17.038538&sspn=0.307384,0.617294&ie=UTF8&cd=1&geocode=FS3YCwMdyvwDAQ&split=0&hq=&hnear=Wroc%C5%82aw,+Wroclaw,+Lower+Silesia,+Poland&z=11
https://books.google.com/books?id=dyMOAAAAQAAJ&pg
https://mathshistory.st-andrews.ac.uk/Biographies/Erlang/
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to ensure that 95% of our customers can call other major towns in the country without finding that the line is

busy". Questions such as these are closely related to problems of queuing and queue management, such as "how

many checkouts do I need in a supermarket to ensure customers on a busy Saturday do not have to wait in line

more than a certain amount of time?", or "how long should we have a stop sign on red before we allow the traffic

to cross an intersection?". Erlang investigated these questions by assuming that there are a large number of

customers but only a small chance that any particular customer would be trying to make a call at any one time.

This is rather like the Binomial with n large and p very small, which had been shown by the French

mathematician, Siméon Poisson (in a work of 1837) to have a simple approximation, and is now given the name

Poisson Distribution. Erlang also assumed that when a call was made, the call lengths followed an Exponential

Distribution, so short calls were much more common than very long calls. In fact, this assumption is unnecessary

— all that really matters is that the calls are made independently and have a known average duration over an

interval of time, e.g. during the peak hour in the morning. The number of calls per hour made to the system

times their average length gives the total traffic, in dimensionless units that are now called Erlangs and usually

denoted by the letter A or E. Erlang derived a variety of statistical measures based on these assumptions, one of

the most important being the so-called Grade of Service (GoS). This states the probability that a call will be

rejected because the service is busy, where the traffic offered is E and the number of lines or operators etc.

available is m. The formula he derived, generally known as the Erlang B formula, is:

0

/ !

/ !

m

m
k

k

E m
GoS

E k







Hence, if we have 2 units of traffic per hour (E=2) and m=5 channels to serve the traffic, the probability of

congestion is expected to be just under 4%. Put another way, if you are designing facilities to serve a known peak

traffic E and a target GoS of 5%, you can apply the formula incrementally (increasing m by 1 progressively) until

you reach your target. Note that this very simple example assumes that there is no facility for putting calls into a

queuing system, or re-routing them elsewhere, and critically assumes that calls arrive independently. In practice

these assumptions worked very well for many years while telephone call traffic levels were quite low and stable

over periods of 0.5-1.0 hours. However, with sudden increases in call rates people started to find lines busy and

then called back immediately, with the result that call arrival rates were no longer random and independent

(Poisson-like). This leads to a very rapidly degrading service levels and/or growing queuing patterns (familiar

problems in physical examples such as supermarket checkouts and busy motorways, but also applicable to

telephone and data communications networks). Erlang, and subsequently others, developed statistical formulas

for addressing many questions of this type that are still used today. However, as with some other areas of

statistical methods previously described, the rise of computational power has enabled entire systems to be

simulated, allowing a range of complex conditions to be modeled and stress-tested, such as varying call arrival

rates, allowing buffering (limited or unlimited), handling device failure and similar factors, introducing dynamic

solutions based on responsive technology that would have been previously impossible to model analytically.

The final area of application we shall discuss is that of experimental design. Research into the best way to

examine the effectiveness of different treatments applied to crops led R A Fisher to devise a whole family of

scientific methods for addressing such problems. In 1919 Fisher joined the Rothamsted Agricultural Experiment

Station and commenced work on the formal methods of randomization and the analysis of variance, which now

form the basis for the design of 'controlled' experiments throughout the world. Examples of the kind of problem

his procedures address are: "does a new fertilizer treatment X, under a range of different conditions/soils etc.,

https://mathshistory.st-andrews.ac.uk/Biographies/Erlang/
https://mathshistory.st-andrews.ac.uk/Biographies/Poisson/
https://mathshistory.st-andrews.ac.uk/Biographies/Fisher/
https://www.rothamsted.ac.uk/
https://www.rothamsted.ac.uk/
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improve the yield of crop Y?" or "a sample of women aged 50-60 are prescribed one of three treatments: hormone

replacement therapy (HRT); or a placebo; or no HRT for x years — does the use of HRT significantly increase the

risk of breast cancer?". 

As can be seen from these varied example, statistics is a science that has developed from the need to address

very specific and practical problems. The methods and measures developed over the last 150-200 years form the

basis for the many of the standard procedures applied today, and are implemented in the numerous software

packages and libraries utilized by researchers on a daily basis. What has perhaps changed in recent years is the

growing use of computational methods to enable a broader range of problems, with more variables and much

larger datasets to be analyzed. The range of applications now embraced by statistics is immense. As an indication

of this spread, the following is a list of areas of specialism for consultants, as listed by the websites of the UK

Royal Statistical Society (RSS): and the US American Statistical Association (ASA):

Statistical Consultancy — Areas of specialism — RSS

Applied operational research Epidemiology Neural networks and genetic
algorithms 

Sampling

Bayesian methods Expert systems Non-parametric statistics Simulation 

Bioassay Exploratory data analysis Numerical analysis and
optimization 

Spatial statistics

Calibration Forecasting Pattern recognition and image
analysis

Statistical computing 

Censuses and surveys GLMs and other non-linear
models

Quality methodology Statistical inference

Clinical trials Graphics Probability Survival analysis

Design & analysis of
experiments

Multivariate analysis Reliability Time Series

Statistical Consultancy — Areas of specialism — ASA

Bayesian Methods General Advanced
Methodological Techniques

Quality Management, 6-Sigma Statistical Software — SAS 

Biometrics & Biostatistics Graphics Risk Assessment & Analysis Statistical Software — SPSS 

Construction of Tests &
Measurements

Market Research Sampling & Sample Design Statistical Training

Data Collection Procedures Modeling & Forecasting Segmentation Survey Design & Analysis

Decision Theory Non Parametric Statistics Statistical Organization &
Administration

Systems Analysis &
Programming

Experimental Design Operations research Statistical Process Control Technical Writing & Editing 

Expert Witness Probability Statistical Software — other Temporal & Spatial Statistics 
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2 Statistical data

Statistics is the field of science that involves the collection, analysis and reporting of information that has been

sampled from the world around us. The term sampled is important here. In most instances the data we analyze is

a sample (a carefully selected representative subset) from a much larger population. In a production process, for

example, the population might be the set of integrated circuit devices produced by a specific production line on

a given day (perhaps 10,000 devices) and a sample would be a selection of a much smaller number of devices

from this population (e.g. a sample of 100, to be tested for reliability). In general this sample should be arranged

in such a way as to ensure that every chip from the population has an equal chance of being selected. Typically

this is achieved by deciding on the number of items to sample, and then using equi-probable random numbers to

choose the particular devices to be tested from the labeled population members. The details of this sampling

process, and the sample size required, is discussed in the section Sampling and sample size. 

The term 'a statistic' refers to a single value or quantity, such as the mean value (the average), maximum or

total, calculated from a sample. Such values may be used to estimate the (presumed) population value of that

statistic. Such population values, particular key values such as the mean and variance, are often referred to as

parameters of the pattern or distribution of population values. 

In many instances the question of what constitutes the population is not as clear as suggested above. When

undertaking surveys of householders, the total population is rarely known, although an estimate of the population

size may be available. Likewise, when undertaking field research, taking measurements of soil contaminants, or

air pollutants or using remote sensing data, the population being investigated is often not so well-defined and

may be infinite. When examining a particular natural or man made process, the set of outcomes of the process

may be considered as the population, so the process outcomes are effectively the population.

Since statistics involves the analysis of data, and the process of obtaining data involves some kind of

measurement process, a good understanding of measurement is important. In the subsections that follow, we

discuss the question of measurement and measurement scales, and how measured data can be grouped into

simple classes to be produce data distributions. Finally we introduce two issues that serve to disguise or alter the

results of measurement in somewhat unexpected ways. The first of these is the so-called statistical grouping

affect, whereby grouped data produce results that differ from ungrouped data in a non-obvious manner. The

second of these is a spatial effect, whereby selection of particular arrangement of spatial groupings (such as

census districts) can radically alter the results one obtains. 

Perhaps one of the mostly hotly debated topics in recent years has been the rise of so-called "Big Data". In an

article "Big Data: Are we making a big mistake?" in the Financial Times, March 2014, Tim Harford addresses these

issues and more, highlighting some of the less obvious issues posed by Big Data. Perhaps primary amongst these is

the bias that is found in many such datasets. Such biases may be subtle and difficult to identify and impossible to

manage. For example, almost all Internet-related Big Data is intrinsically biased in favor of those who have access

to and utilize the Internet most, with demographic and geographic bias built-in. The same applies for specific

services, such as Google, Twitter, Facebook, mobile phone networks, opt-in online surveys, opt-in emails — the

examples are many and varied, but the problems are much the same as those familiar to statisticians for over a

century. Big Data does not imply good data or unbiased data, and Big Data presents other problems — it is all to

easy to focus on data exploration and pattern discovery, identifying correlations that may well be spurious — a

result of the sheer volume of data and the number of events and variables measured. With enough data and

enough comparisons, statistically significant findings are inevitable, but that does not necessarily provide real

https://www.ft.com/cms/s/2/21a6e7d8-b479-11e3-a09a-00144feabdc0.html
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insights, understanding, or identification of causal relationships. Of course there are many important and

interesting datasets where the collection and storage is far more systematic, less subject to bias, recording

variables in a direct manner, with 'complete' and 'clean' records. Such data are stored and managed well and tend

to be those collected by agencies who supplement the data with metadata (data about data) and quality

assurance information. 

Measurement

In principle the process of measurement should seek to ensure that results obtained are consistent, accurate (a

term that requires separate discussion), representative, and if necessary independently reproducible. Some

factors of particular importance include: 

· framework — the process of producing measurements is both a technical and, to an extent, philosophical

exercise. The technical framework involves the set of tools and procedures used to obtain and store numerical

data regarding the entities being measured. Different technical frameworks may produce different data of

varying quality from the same set of entities. In many instances measurement is made relative to some

internationally agreed standard, such as the meter (for length) or the kilogram (for mass). The philosophical

framework involves the notion that a meaningful numerical value or set of values can be assigned (using some

technical framework) to attributes of the entities. This is a model or representation of these entity attributes

in the form of numerical data — a person's height is an attribute that we can observe visually, describe in

words, or assign a number to based on an agreed procedure relative to a standard (in meters, which in turn is

based on the agreed measurement of the speed of light in a vacuum)

· observer effects — in both social and pure science research, observer effects can be significant. As a simple

example, if we are interested in measuring the temperature and air quality in a process clean room, the

presence of a person taking such measurements would inevitably have some affect on the readings. Similarly,

in social research many programmes can display the so-called Hawthorne Effect in which changes (often

improvements) in performance are partially or wholly the result of behavioral changes in the presence of the

observer (reflecting greater interest in the individuals being observed)

· metrics — when measuring distance in the plane using Euclidean measure the results are invariant under

translation, reflection and rotation. So if we use Euclidean measure we can safely make measurements of

distances over relatively small areas and not worry about the location or orientation at which we took the

measurements and made the calculation. However, over larger areas and/or using a different metric,

measurements may fail the invariance test. In the case of measurements that seek to compute distances,

measurements made using the so-called City block or Manhattan distance are not invariant under rotation.

Likewise, Euclidean distance measurements give incorrect results over larger distances on the Earth's surface

(e.g. >20 kilometers). When making other forms of measurement similar issues apply (e.g. the effect of the

local gravitational field on weight, the local magnetic field on magnetic flux, etc.)

· temporal effects — measurement made at different times of the day, days of the year and in different years

will inevitably differ. If the differences are simply random fluctuations in a broadly constant process (results

are unaffected by temporal translation of the data) the process is described as being stationary. If a trend

exists (which could be linear, cyclical or some other pattern) the process is said to be non-stationary. All too

often consideration of the temporal aspect of measurement is omitted, e.g. a person's height will be measured

as shorter in the evening as compared with the morning, a persons academic or sporting achievement can be

significantly affected by when they were born (see Gladwell, 2008, for an extensive discussion of this issue,

[GLA1]) — the issue is always present even if it is not of direct concern. Frequently the sequence of event

https://en.wikipedia.org/wiki/Hawthorne_effect
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measurement is important, especially where humans are doing the measurements or recordings, since issues

such as concentration become important over time; event sequences may also be explicitly monitored, as in

control charts, time series analysis and neural network learning

· spatial effects — measurements made at different locations will typically exhibit spatial variation. If all

locations provided identical data the results would be a spatially uniform distribution. If the results are similar

in all directions at all locations, then the process is described as isotropic (i.e. results are rotationally

invariant). If the results are similar at all locations (i.e. the results are translationally invariant) then the

process can be described as spatially stationary. In practice most spatial datasets are non-stationary

Measurement scales

Measurement gives rise to values, such as counts, sets of decimal values, binary responses (yes/no,

presence/absence) etc., which may be of different types (scales). The principal scales encountered are:

· Nominal (or Categorical): so-called nominal data is really just assignment of data to named classes, such as

Red, Blue, Green — or Utah, Nevada, New York. An attribute is nominal if it successfully distinguishes between

groups, but without any implied ranking or potential for arithmetic. For example, a telephone number can be a

useful attribute of a place, but the number itself generally has no numeric meaning. It would make no sense to

add or divide telephone numbers, and there is no sense in which the number 9680244 is more or better than

the number 8938049. Likewise, assigning arbitrary numerical values to classes of land type, e.g. 1=arable,

2=woodland, 3=marsh, 4=other is simply a convenient form of naming (the values are still nominal)

· Ordinal: this term refers to data values that involves a concept of order, from least to greatest and may

include negative numbers and 0. A set of apparently ordered categories such as: 1=low, 2=medium, 3=high,

4="don't know" does not form an ordinal scale. An attribute is ordinal if it implies a ranking, in the sense that

Class 1 may be better than Class 2, but as with nominal attributes arithmetic operations do not make sense,

and there is no implication that Class 3 is worse than Class 2 by the precise amount by which Class 2 is worse

than Class 1. An example of an ordinal scale might be preferred locations for residences — an individual may

prefer some areas of a city to others, but such differences between areas may be barely noticeable or quite

profound. Analysis of nominal and ordinal data is often qualitative, or uses visualization techniques to highlight

interesting patterns, and may use non-parametric statistical methods especially when count data are available

· Interval: numeric data that exhibits order, plus the ability to measure the interval (distance) between any pair

of objects on the scale (e.g. 2x-xº3x-2x). Data are of interval type if differences make sense, as they do for

example with measurements of temperature on the Celsius or Fahrenheit scales

· Ratio: interval plus a natural origin, e.g. temperature in degrees Kelvin, weights of people (i.e. so x=2y is

meaningful); Interval or ratio scales are required for most forms of (parametric) statistical analysis. Data are

ratio scaled if it makes sense to divide one measurement by another. For example, it makes sense to say that

one person weighs twice as much as another person, but it makes no sense to say that a temperature of 20

Celsius is twice as warm as a temperature of 10 Celsius, because while weight has a meaningful absolute zero

Celsius temperature does not (but on an absolute scale of temperature, such as the Kelvin scale, 200 degrees

can indeed be said to be twice as warm as 100 degrees). It follows that negative values cannot exist on a ratio

scale. 

· Cyclic: modulo data — like angles and clock time. Measurements of attributes that represent directions or

cyclic phenomena have the awkward property that two distinct points on the scale can be equal — for example,

0 and 360 degrees. Directional data are cyclic (see the sample wind rose diagram below) as are calendar dates.
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Arithmetic operations are problematic with cyclic data, and special techniques are needed to handle them. For

example, it makes no sense to average 1° and 359° to get 180°, since the average of two directions close to

north clearly is not south. Mardia and Jupp (1999, [MAR1]) provide a comprehensive review of the analysis of

directional or cyclic data

Cyclic data — Wind direction and speed, single location

 

Bar charts, Histograms and Frequency distributions

· Bar chart: The process of measurement may produce data that are recorded as counts and assigned to purely

nominal classes, for example counts of different bird species in a woodland. In this instance a simple bar chart

may be produced to illustrate the different relative frequencies of each species. Each class is assigned an

individual vertical or horizontal bar and typically each bar being the same width (so height indicates relative

frequency). Bars are separated by distinct gaps and the order in which the bars are placed on the horizontal or

vertical axis is of no importance. The example below (upper diagram) shows the results of the UK

parliamentary election in May 2010. The bar chart indicates the seats won in the "first past the post" system

used currently in the UK, with a geographic map of the spread of these results. The lower diagram shows the

same data but with the geography amended to minimize the visual distortion caused by constituencies having

very different areas. For color versions of these charts see the web, ePUB or PDF editions of this Handbook.
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BBC UK Election 2010 results

source: http://news.bbc.co.uk/1/shared/election2010/results/. Note

that the first diagram is familiar but misleading as it does not reflect

the density of voters, suggesting the seats obtained by parties in large

rural areas are somehow more significant than densely populated urban

areas. This view can be corrected in various ways, most simply by

adjusting the areas to reflect the populations in each. The result is a

proportional map, with areas distorted but still recognizable, as

illustrated in the second diagram.

· Histogram: If measurements yield numerical values on an interval or ratio scale, these can be grouped into

classes and the counts (or frequencies) in each class plotted as a bar chart in which the order on the horizontal

axis (or x-axis) is important. A bar chart of this type is called a histogram and should be plotted without spaces

between the vertical bars reflecting the continuous nature of the scale (see example of light bulb life data,

below). The term histogram was introduced by Karl Pearson in the late 19th century to describe any chart of

this type, especially charts in which the horizontal axis represented time. He liked the idea that the Greek

word histos, which means anything placed vertically, like a ship's mast, is similar to the word historical, giving

the idea of a frequency chart with a time-based x-axis.

· Frequency distribution: A frequency distribution is a tabulated set of sample data, showing the number of

occurrences of events or observations that fall into distinct classes or that have particular values. As such, it

can be seen as a convenient way of avoiding the need to list every data item observed separately. However,

frequency distributions can often provide greater insight into the pattern of sample values, and enables these

patterns to be compared with well-understood standard distributions, such as the Binomial (discrete) and

Normal (continuous) distribution. A simple example is shown in the table below together with the chart (or

http://news.bbc.co.uk/1/shared/election2010/results/
https://mathshistory.st-andrews.ac.uk/Biographies/Pearson/
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histogram) of the data. In this table there are 17 equal interval classes, for each of which the number of light

bulbs in a sample of N=150 that fail after a certain time are listed. 

Length of life of electric light bulbs — tabulated and histogram

Life (hours) Frequency Histogram of frequencies

0-200 1

Light bulb life

0

5

10

15

20

25
0
-2

0
0

2
0
0
-4

0
0

4
0
0
-6

0
0

6
0
0
-8

0
0

8
0
0
-1

0
0
0

1
0
0
0
-1

2
0
0

1
2
0
0
-1

4
0
0

1
4
0
0
-1

6
0
0

1
6
0
0
-1

8
0
0

1
8
0
0
-2

0
0
0

2
0
0
0
-2

2
0
0

2
2
0
0
-2

4
0
0

2
4
0
0
-2

6
0
0

2
6
0
0
-2

8
0
0

2
8
0
0
-3

0
0
0

3
0
0
0
-3

2
0
0

3
2
0
0
-3

4
0
0

Life in hours

F
re

q
u

e
n

c
y

200-400 3

400-600 2

600-800 10

800-1000 19

1000-1200 21

1200-1400 23

1400-1600 18

1600-1800 17

1800-2000 10

2000-2200 8

2200-2400 5

2400-2600 5

2600-2800 4

2800-3000 2

3000-3200 1

3200-3400 1

Total 150

after Pearson E S (1933, [PEA1])

Several observations should be made about this particular frequency distribution: 

(i) it has a single category or class containing the most frequent bulb life (1200-1400hrs) — this category is called

the mode, and because there is a single mode, the distribution is said to be unimodal

(ii) the set of classes in the tabulated list are not really correctly defined — the boundaries are indeterminate,

and should be specified as [0,199.9],[200-399.9], etc. (or similar) or better still [0,<200], [200,<400] etc. (in

Pearson's paper, which was primarily concerned with production control and sampling, he actually only supplied

the frequency diagram, not the tabulated data) — the precise definition of the boundaries of classes avoids the

problem of deciding how to assign values that lie on the boundary (e.g. a bulb with measured lifespan of exactly

200 hours)

(iii) each class is the same width (duration) and every data value is allocated to a unique class; however, when

performing certain calculations, such as computing the mean value, a decision has to be made as to whether to
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use the recorded frequencies in the various classes or bins, or the source data (if available). If the frequencies

have to be used, it is necessary to define a representative value for each interval, which is usually taken to be

the mid-interval value. Note that this assumption hides the within-class variation in values which may create

some errors in computations, especially if the class widths are large. The question of bin selection is discussed

later in this section

(iv) the width (duration) of each class is somewhat arbitrary and this choice significantly affects the form of the

frequency distribution. If the class width was very small (1 hour say) most classes would contain the frequency 0,

and a few would contain just 1 failure. At the opposite extreme, if the class width was 3400 hours all the results

would be in just the one class. In both these examples very little information would be gained from inspecting

the pattern of frequencies. Selecting the class boundaries and number of classes is an important operation — it

should ensure that the minimum of information is lost, whilst also ensuring that the distribution communicates

useful and relevant information. Many authors recommend the use of an odd number of classes, and there are a

myriad of rules-of-thumb for choosing the number of classes and class boundaries (see Class Intervals, below)

(v) all the data fits into the classes (in this example). This is often not possible to achieve with equal interval

classes, especially at the upper and lower ends of the distribution. Indeed, frequency distributions with very long

tails are common, and often the final category is taken as 3000+ for example

(vi) the data being analyzed in this example can be regarded as a continuous variable (lifespan of the bulb) and is

a single variable (i.e. univariate data)

There are several extensions and variations that can be applied to the above model. The first is to rescale the

vertical axis by dividing each class value by the total sample size (N=150), in which case the data are described as

relative frequencies, and in examples such as this, the values can be considered as estimated probabilities. 

A second important variant is the extension of the frequency table and chart to multivariate and multi-

dimensional cases. In the bivariate case the data may simply be separate measures applied to the same classes,

or they may be joint measures. For example, suppose that our classes show the heights of individuals in a large

representative sample. The first column of a bivariate frequency tabulation might show the frequency

distribution for men over 18 years, whilst the second column shows the same data but for women. However, if

the mix of those sampled included fathers and sons, one could construct a two-way or joint frequency

distribution (or cross-tabulation) of the men with classes "Tall" and "Short", where Tall is taken as over some

agreed height. The table below illustrates such a cross-tabulation, based on a study of families carried out by Karl

Pearson and Dr Alice Lee from 1893 onwards:

Cross-tabulation of father-son height data

Father short Father tall Total fathers

Son short 250 89 339

Son tall 215 446 661

Total sons 465 535 1000

simplified, after K Pearson and A Lee (1903, Table XXII [PEA2]; the overall sample size of 1000 families and

the cell entries are simply a proportional reduction from the 1078 cases in the original data).

In this example each part of the frequency distribution is divided into just 2 classes, but each could readily have

been separated into 3 or more height bands. Indeed, the original table is divided into 20 rows and 17 columns

https://mathshistory.st-andrews.ac.uk/Biographies/Pearson/
https://mathshistory.st-andrews.ac.uk/Biographies/Pearson/
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(illustrated in full in the Probability section of this Handbook), but inevitably many of the table entries are blank.

Row and column totals have been provided, and these are sometimes referred to as marginal frequencies or

marginal distributions. They are essentially the univariate frequency distributions for the rows and columns taken

separately. 

As with the univariate frequency data, this table could be converted to relative frequencies by dividing through

by 1000, but it also affords another perspective on the data; we can consider questions such as: "what is the

probability that a tall son has a tall father?" If the data are truly representative of the population of fathers and

sons, then the estimated probability is 446/1000 or 44.6%. But when we examine the table, we find that there

are far more tall fathers and tall sons than short fathers and short sons. We could then ask "does this estimate of

probability suggest that tall fathers have tall sons, i.e. some genetic or other relationship factor?". Overall we

can see from the totals entries that 53.5% of our sample fathers are tall and 66.1% of the sons are tall, and if

these two groups were completely independent we might reasonably expect 53.5% x 66.1% of the father-son

combinations to be tall (applying the rule of multiplication for independent probabilities). But this combination is

actually only 35.4%, so the 44.6% finding does suggest a relationship, but whether it is significant (i.e. highly

unlikely to be a chance result) requires more careful analysis using a particular statistical technique, contingency

table analysis. Cross-classifications of this kind do not require numeric classes or classes derived from numeric

values as in this example — in many instances the rows contain classes such as "Success, Failure" or "Survived,

Died" and the columns might contain "Treatment A, Treatment B, Placebo, No treatment", with the table entries

providing a count of the number of plants, patients etc. recorded in that combination of classes. In general such

multivariate classification tables are restricted to 2-way, and occasionally 3-way analysis, and rarely are the

number of classes in each dimension of the classification large if analyzed in this manner — often they are 5 or

less.

Frequency distributions can also by multi-dimensional. For example, the distribution of cases of a particular

disease around a point source of contamination might be measured in distance bands and radial sectors around

this location. This pattern might then be compared with a known bivariate frequency distribution, such as the

bivariate Normal distribution. In three dimensions one could be looking at the distribution of bacteria in cheese,

or the distribution of stars in a region of space.

Class intervals, bins and univariate classification

If sampled data are measurements of a continuous variable, x, such as the light bulb lifespans described above,

then the standard procedure in frequency chart (or histogram) production is to create a set of equal width class

intervals (or bins) and count the frequencies occurring in each interval. The values at which the bins are

separated are often referred to as cut-points. The number of intervals to be used is a matter for the researcher

to determine, depending on the problem requirements. It is often helped, in interactive software packages, by

viewing a display of the resulting histogram as different options are selected. For visualization purposes it is

desirable to limit the number of classes to between 5 or 9, as using large numbers of classes (20+) can be difficult

to display and interpret with clarity, and an odd number of intervals will ensure there is a central class. On the

other hand, with a large set of observations that exhibit considerable spread across the range, a larger number of

classes may be more helpful and will avoid the problem of having much of the real variation hidden by large class

intervals. 

There are several rules of thumb for determining the ideal number of bins and/or the width for fixed-width bins

for real-valued continuous data. These include the following (n is the number of observations or data items to be
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grouped, k is the number of classes, h is the bin width, s is the standardized average spread or standard deviation

of the sample data):

max min max min
, or k h

h k

 

   

 

   

   

These options use the range and a pre-selected bin width to define the number of bins, k, or alternatively the

number of bins is specified and the range used to determine the bin width, h. Note that if the distribution has a

very long tail, e.g. a few data items that are very much larger or smaller than all the others, these formulas will

produce excessively wide bins.

The next formula is due to Scott (1979, [SCO1]) and uses the standard deviation of the dataset, s, rather than the

range to determine bin width:

1/33.5 /h s n 



 

 

Thus for 1000 data items with a standard deviation of 25, h=9. The number of bins still remains to be chosen, and

this will be a matter of choice again, but could safely use the range calculation for k, above, in most cases.

Scott's model is built on an analysis of the optimal properties of a binning arrangement with constant bin widths

and an examination of the ideas of so-called kernel density estimation (KDE) techniques. The latter use all the

data points to create a smooth estimated probability distribution (or probability density function), which has

been shown to produce excellent results but may require a considerable amount of data processing. 

As mentioned earlier, if the frequencies are to be used in computations it is necessary to define a representative

value for each interval, which is usually taken to be the mid-interval value. Thus if the bin width is h, and the

mid-interval value is xi, the interval has a range from xi-h/2 to xi+h/2. This assumption hides the within-interval

variation in values which may create some errors in computations, especially if the class width are large. The so-

called Sheppard's correction, named after its author William Sheppard (1897), is an adjustment to estimates of

the variance when (Normally distributed) fixed width bins are used. Without correction the computations tend to

over-estimate the variance since they effectively treat all values in a range as the same as the mid-value.

Sheppard's correction to the variance is -h2/12, an amount that is the variance of the Uniform distribution

defined over an interval of width, h.

The table below provides details of a number of univariate classification schemes together with comments on

their use. Such schemes are essentially a generalization of fixed-width binning. Many statistical software

packages provide classification options of the types listed, although some (such as the box, Jenks and percentile

methods) are only available in a limited number of software tools. 

The scheme described in the table as Natural breaks or Jenks' method is an automated procedure utilizing the

following algorithm:

Step 1: The user selects the attribute, x, to be classified and specifies the number of classes required, k

Step 2: A set of k-1 random or uniform values are generated in the range [min{x},max{x}]. These are used as

initial class boundaries or 'cut points'

Step 3: The mean values for each initial class are computed and the sum of squared deviations of class members

from the mean values is computed. The total sum of squared deviations (TSSD) is recorded

https://mathworld.wolfram.com/SheppardsCorrection.html
https://mathshistory.st-andrews.ac.uk/Biographies/Sheppard/
https://mathworld.wolfram.com/SheppardsCorrection.html
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Step 4: Individual values in each class are then systematically assigned to adjacent classes by adjusting the class

boundaries to see if the TSSD can be reduced. This is an iterative process, which ends when improvement in TSSD

falls below a threshold level, i.e. when the within class variance is as small as possible and between class

variance is as large as possible. True optimization is not assured. The entire process can be optionally repeated

from Step 1 or 2 and TSSD values compared
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Univariate binning/classification schemes 

Classification scheme Description/application

Unique values Each value is treated separately — this is effectively a nominal data classification model

Manual classification The analyst specifies the boundaries between classes/bins as a list, or specifies a lower bound
and interval or lower and upper bound plus number of intervals required. This approach is
widely used in statistical software packages

Equal interval The attribute values are divided into n classes with each interval having the same
width=range/n

Exponential interval Intervals are selected so that the number of observations in each successive interval increases
(or decreases) exponentially 

Equal count or quantile Intervals are selected so that the number of observations in each interval is the same. If each
interval contains 25% of the observations the result is known as a quartile classification.
Ideally the procedure should indicate the exact numbers assigned to each class, since they
will rarely be exactly equal

Percentile In the standard version equal percentages (percentiles) are included in each class, e.g. 20% in
each class. In some implementation of percentile plots (specifically designed for exploratory
data analysis, EDA) unequal numbers are assigned to provide classes that, for example,
contain 6 intervals: <=1%, >1% to <10%, 10% to <50%, 50% to <90%, 90% to <99% and >=99%

Natural breaks/Jenks Used within some software packages, these are forms of variance-minimization classification.
Breaks are typically uneven, and are selected to separate values where large changes in value
occur. May be significantly affected by the number of classes selected and tends to have
unusual class boundaries. Typically the method applied is due to Jenks, as described in Jenks
and Caspall (1971, [JEN1]), which in turn follows Fisher (1958, [FIS1]). Very useful for
visualization work, but unsuitable for comparisons

Standard deviation (SD) The mean and standard deviation of the data are calculated, and values classified according
to their deviation from the mean (z-transform). The transformed values are then grouped into
classes, usually at intervals of 1.0 or 0.5 standard deviations. Note that this often results in no
central class, only classes either side of the mean and the number of classes is then even. SD
classifications in which there is a central class (defined as the mean value +/-0.5SD) with
additional classes at +/- 1SD intervals beyond this central class, are also used

Box A variant of quartile classification designed to highlight outliers, due to Tukey (1977, Section
2C, [TUK1]). Typically six classes are defined, these being the 4 quartiles, plus two further
classifications based on outliers. These outliers are defined as being data items (if any) that
are more than 1.5 times the inter-quartile range (IQR) from the median. An even more
restrictive set is defined by 3.0 times the IQR. A slightly different formulation is sometimes
used to determine these box ends or hinge values

Supervised binning and classification

Some statistical software packages differentiate between unsupervised and supervised schemes. These terms

have different meanings within different packages and application areas, which can be confusing. In broad terms

an unsupervised method utilizes the data directly, whereas a supervised method cross-refers the sample data to
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some other dataset that is already divided into a number of distinct classes or categories. It then uses this other

dataset to guide (or supervise) the classification process. 

In SPSS, for example, supervised (or optimal) binning refers to a procedure in which the source data is divided

into bins using cut-points that seek to minimize the mix of a separate, but linked, nominal variable in each bin.

For example, the variable to be binned might be household income in $000s p.a., and the supervisor or control

variable might be the level of education achieved by the main earner of the household. The principal technique

used, known as MDLP, starts by placing every (sorted) data item (observation) into a single large bin. The bin is

then divided using cut-points, and the mix of the linked nominal variable in each bin is examined (using an

Entropy or Diversity statistic). If every entry in the bin has the same linked nominal category then the Entropy

measure will be 0, which is regarded as optimal with respect to the nominal variable. On the other hand if there

is a large mix of nominal variables represented, of roughly equal numbers, the bin will have a higher Entropy

score. The algorithm adjusts the cut points and increases the number of cut points (and hence bins) to achieve an

improvement in the total Entropy of the binning process. 

In remote-sensing applications (for example, multi-spectral satellite imagery) the task is to classify individual

image pixels into groups, which may be pre-defined (e.g. land use categories, such as Forest, Grasslands,

Buildings, Water etc.) or derived from the data. Unsupervised classification in this instance refers to the use of

wholly automated procedures, such as K-means clustering, in order to group similar pixels. Supervised

classification refers to a multi-stage process, in which the dataset is compared to a reference dataset that has

already been classified, and the similarity between pixels in the dataset to be classified and the reference set is

used as a means for achieving the 'best' classification. Clearly procedures such as this, which arise in a number of

disciplines, essentially belong in the realm of multivariate data classification, which may or may not use

statistical techniques and measures as part of that process.

Scale and arrangement

In the preceding subsections we have seen that determining the ideal number and size of bins can be a quite

complicated exercise. It was noted that with too many bins only frequencies of 1 and 0 would be recorded,

whereas with very few bins, almost all the variation in the data would be hidden within the bin, or class, with

little or no variation detectable between classes. This is often the exact opposite of the ideal classification or

grouping schemes, where the aim is generally to minimize within-class variance as compared to between class

variance — making sure that classes or groupings are as homogeneous as possible. Two additional, and somewhat

unexpected factors, come into play when such groupings are made. These are known as the statistical effect and

the arrangement effect.

To understand the statistical effect (which is a scale or grouping effect) look at the regional employment

statistics shown in the Table below (after de Smith et al. (2018, [DES1]). Areas A and B both contain a total of

100,000 people who are classified as either employed or not. In area A 10% of both Europeans and Asians are

unemployed (i.e. equal proportions), and likewise in Area B we have equal proportions (this time 20%

unemployed). So we expect that combining areas A and B will give us 200,000 people, with an equal proportion of

Europeans and Asians unemployed (we would guess this to be 15%), but it is not the case — 13.6% of Europeans

and 18.3% of Asians are seen to be unemployed! The reason for this unexpected result is that in Area A there are

many more Europeans than Asians, so we are working from different total populations. 

https://www.ibm.com/products/spss-statistics
http://en.wikipedia.org/wiki/K-means_clustering
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Regional employment data — grouping effects

Employed
(000s)

Unemployed
(000s)

Total (000s)
(Unemployed %)

Area A

European 81 9 90 (10%)

Asian 9 1 10 (10%)

Total 90 10 100 (10%)

Area B

European 40 10 50 (20%)

Asian 40 10 50 (20%)

Total 80 20 100 (20%)

Areas A and B

European 121 19 140 (13.6%)

Asian 49 11 60 (18.3%)

Total 170 30 200 (15%)

There is a further, less well known problem, which has particular importance in the process of elections and

census data collection but also has much wider implications. This is due to the way in which voting and census

areas are defined. Their shape, and the way in which they are aggregated, affects the results and can even

change which party is elected. The Grouping Data diagram below illustrates this issue for an idealized region

consisting of 9 small voting districts. The individual zone, row, column and overall total number of voters are

shown in diagram A, with a total of 1420 voters of whom roughly 56% (800) will vote for the Red party (R) and 44%

(620) for the Blue party (B). With 9 voting districts we expect roughly 5 to be won by the Reds and 4 by the Blues,

as is indeed the case in this example. However, if these zones are actually not the voting districts themselves,

but combinations of the zones are used to define the voting areas, then the results may be quite different. As

diagrams B to F show, with a voting system of “first past the post” (majority in a voting district wins the district)

then we could have a result in which every district was won by the Reds (Case C), to one in which 75% of the

districts were won by the Blues (Case F). So it is not just the process of grouping that generates confusing results,

but also the pattern of grouping. We are rarely informed of the latter problem, although it is one that is of great

interest to those responsible for defining and revising electoral and census district boundaries. 
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Grouping Data — Zone arrangement effects on voting results
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A. R=5,B=4 B. R=2,B=1 C. R=3,B=0

D. R=2,B=2 E. R=2,B=4 F. R=1,B=3

800
620

Totals

B: Blue wins seat

R: Red wins seat

This is not just a problem confined to voting patterns and census data. For example, suppose the information

being gathered relates to the average levels of lead and zinc in the soil within each field. Samples based on

different field boundaries would show that in some arrangements the average proportion of lead in the soil

exceeded that of zinc, whilst other arrangements would show the opposite results. 
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2.1 The Statistical Method

Many people would regard statistical analysis as a purely technical exercise involving the application of

specialized data collection and analysis techniques, but this perception is both incorrect and misleading.

Statistical problems should be viewed within the context of a broad methodological framework, and it is the

specific nature of this framework that defines "The Statistical Method". Here we are using the terminology and

interpretation of MacKay and Oldford (2000, [MAC1]). They carefully examined the nature of statistical analysis

by discussing the problem of determining the speed of light, as conducted in the experiments of A A Michelson in

1879. Although they used research that involved a relatively complicated experiment as their example, the

conclusions they draw are much more wide-reaching. Essentially they argue that statistical analysis must involve

a broad perspective on the task under consideration, from the initial Problem definition stage (P), through

Planning and Data collection stages (P,D) through to Analysis (A) and Conclusions (C). This is similar to the

"statistical problem solving cycle" as described in the Probability & Statistics leaflet mentioned in our Suggested

Reading section and elsewhere, but widens the scope of this methodology.

The elements of this methodological framework are shown in the PPDAC table below — each is discussed in detail

in their paper. MacKay and Oldford note that very often the complexity of the analysis phase is greatly reduced if

the totality of a problem is addressed in the manner described. As can be seen, the formal analysis stage comes

well down the sequence of steps that are involved in producing good quality statistical research. Absolutely

crucial to the entire process is the initial problem definition. Only once this is thoroughly understood by all

interested parties can a plan for data collection be devised and the data obtained for subsequent analysis. 

PPDAC: The Statistical Method, after MacKay and Oldford (2000)

Details Michelson experiment

Problem

Units & Target Population (Process)
Response Variate(s)
Explanatory Variates
Population Attribute(s)
Problem Aspect(s) — causative,
descriptive, predictive

Unit: One (measured) light transmission. Population: all such
transmissions
Response variate: the speed of light in each measured transmission
Explanatory variates: a large number of possible factors that might
help explain variations in the measured data (e.g. method used, the
measurement process, time of day, temperature)
Population attributes: the average speed of light in a vacuum
Problem aspect: descriptive (seeking an estimate of a specific value)

Plan

Study Population (Process)
      (Units, Variates, Attributes)
Selecting the response variate(s)
Dealing with explanatory variates
Sampling Protocol
Measuring processes
Data Collection Protocol

Study population: The collection of units that could possibly be
measured (known as the sampling frame in survey work). Michelson
measured the speed of light in air, not in a vacuum — the difference
between the study population and the true population is known as
the study error
Response variates: Michelson measured the speed of light indirectly,
using distances, rotational speed (of a mirror), timing device (tuning
forks) and temperature
Explanatory variates: There may be a large number. Where possible
Michelson tried to fix those factors he was aware of, and measure or
vary others to check if they had an effect on his results
Sampling protocol: The detailed procedure followed for sampling the
data — in Michelson's case he made sets of measurements one hour
after sunrise and one hour before sunset, on a series of days close to
mid-summer. He made 1000 measurements, with some made by an
independent observer

https://en.wikipedia.org/wiki/Speed_of_light
https://projecteuclid.org/journals/statistical-science/volume-15/issue-3/Scientific-Method-Statistical-Method-and-the-Speed-of-Light/10.1214/ss/1009212817.full
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Details Michelson experiment

Measuring processes: the equipment, people, and methods used —
measurement error, which is the difference between the measured
value and the true value, is incurred in this step of the procedure
Data Collection Protocol: the management and administration
(recording etc.) of the entire data collection exercise — nowadays
this would include data storage and processing considerations

Data

Execute the Plan
       and record all departures
Data Monitoring
Data Examination
       for internal consistency
Data storage

Execution: Michelson did not record every result, but just the
average values for blocks of 10 measurements
Data monitoring: Tracking data as they are obtained helps identify
patterns, temporal drift, outliers etc. Michelson did not explicitly do
this
Data examination: The internal consistency of the data should be
checked, for unexpected features (each using EDA techniques), but
Michelson did not appear to do this
Data storage: simple tabulated results on paper in this instance

Analysis

Data Summary
      numerical and graphical
Model construction
       build, fit, criticize cycle
Formal analysis

In Michelson's case he summarized his data in tables and computed
the average of his 100 measured velocities in air, and then corrected
for the deflection effect that air would have on his results, making a
small adjustment for temperature variations in each case. 
Formal analysis was limited to analyzing possible source of error and
their maximum impact on the results, in order to obtain an estimate
of the velocity of light in a vacuum, +/- the estimated errors

Conclusion

Synthesis
       plain language, effective   
       presentation graphics
Limitations of study
    discussion of potential errors

Michelson presented his central finding and provided a full discussion
as to possible sources of error and why many factors could be ignored
due to the manner in which the plan was made and executed.
Despite this, the true value for the speed of light is actually outside
the limits of his estimates at the time, even though his mean result
was within 0.05% of the correct figure, hence he slightly
underestimated the size of the errors affecting his result

The PPDAC summary table suggests a relatively linear flow from problem definition through to conclusions — this

is typically not the case. It is often better to see the process as cyclical, with a series of feedback loops. A

summary of a revised PPDAC approach is shown in the diagram below. As can be seen, although the clockwise

sequence (1®5) applies as the principal flow, each stage may and often will feed back to the previous stage. In

addition, it may well be beneficial to examine the process in the reverse direction, starting with Problem

definition and then examining expectations as to the format and structure of the Conclusions (without pre-

judging the outcomes!). This procedure then continues, step-by-step, in an anti-clockwise manner (e®a)

determining the implications of these expectations for each stage of the process. 
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PPDAC as an iterative process

We now expand our discussion by examining the components this revised model in a little more detail:

Problem: Understanding and defining the problem to be studied is often a substantial part of the overall

analytical process — clarity at the start is obviously a key factor in determining whether a programme of analysis

is a success or a failure. Success here is defined in terms of outcomes (or objectives) rather than methods. And

outcomes are typically judged and evaluated by third parties — customers, supervisors, employers, politicians —

so their active involvement in problem specification and sometimes throughout the entire process is essential.

Breaking problems down into key components, and simplifying problems to focus on their essential and most

important and relevant components, are often very effective first steps. This not only helps identify many of the

issues to be addressed, likely data requirements, tools and procedures, but also can be used within the iterative

process of clarifying the customer’s requirements and expectations. Problems that involve a large number of key

components tend to be more complex and take more time than problems which involve a more limited set. This is

fairly obvious, but perhaps less obvious is the need to examine the interactions and dependencies between these

key components. The greater the number of such interactions and dependencies the more complex the problem

will be to address, and as the numbers increase complexity tends to grow exponentially. Analysis of existing

information, traditionally described as “desk research”, is an essential part of this process and far more

straightforward now with the advantage of online/Internet-based resources. Obtaining relevant information from

the client/sponsor (if any), interested third parties, information gatekeepers and any regulatory authorities,

forms a further and fundamental aspect to problem formulation and specification. Box et al. (2005, p13, [BOX1])

suggest a series of questions that should be asked, particularly in the context of conducting experiments or trials,
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which we list below with minor alterations from their original. As can be seen, the questions echo many of the

issues we raise above:

· what is the objective of this investigation?

· who is responsible?

· I am going to describe your problem — is my description correct?

· do you have any past data? and if so, how were these data collected/in what order/on what days/by

whom/how?

· do you have any other data like these?

· how does the equipment work/what does it look like/can I see it?

· are there existing sampling, measurement and adjustment protocols?

Plan: Having agreed on the problem definition the next stage is to formulate an approach that has the best

possible chance of addressing the problem and achieving answers (outcomes) that meet expectations. Although

the PLAN phase is next in the sequence, the iterative nature of the PPDAC process emphasizes the need to define

and then re-visit each component. Thus whilst an outline project plan would be defined at this stage, one would

have to consider each of the subsequent stages (DATA, ANALYSIS, CONCLUSIONS) before firming up on the detail

of the plan. With projects that are more experimental in nature, drawing up the main elements of the PLAN

takes place at this stage. With projects for which pre-existing datasets and analysis tools are expected to be

used, the PLAN stage is much more an integrated part of the whole PPDAC exercise. The output of the PLAN

stage is often formulated as a detailed project plan, with allocation of tasks, resources, times, analysis of critical

path(s) and activities, and estimated costs of data, equipment, software tools, manpower, services etc.

Frequently, project plans are produced with the aid of formal tools, which may be paper-based or software

assisted. In many instances this will involve determining all the major tasks or task blocks that need to be carried

out, identifying the interconnections between these building blocks (and their sequencing), and then examining

how each task block is broken down into sub-elements. This process then translates into an initial programme of

work once estimated timings and resources are included, which can then be modified and fine-tuned as an

improved understanding of the project is developed. In some instances this will be part of the Planning process

itself, where a formal functional specification and/or pilot project forms part of the overall plan. As with other

parts of the PPDAC process, the PLAN stage is not a one-shot static component, but typically includes a process of

monitoring and re-evaluation of the plan, such that issues of timeliness, budget, resourcing and quality can be

monitored and reported in a well-defined manner. The approach adopted involves consideration of many issues,

including: 

· the nature of the problem and project — is it purely investigative, or a formal research exercise; is it

essentially descriptive, including identification of structures and relationships, or more concerned with

processes, in which clearer understanding of causes and effects may be required, especially if predictive

models are to be developed and/or prescriptive measures are anticipated as an output?

· does it require commercial costings and/or cost-benefit analysis?

· are particular decision-support tools and procedures needed?

· what level of public involvement and public awareness is involved, if any?
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· what particular operational needs and conditions are associated with the exercise?

· what time is available to conduct the research and are there any critical (final or intermediate) deadlines?

· what funds and other resources are available?

· is the project considered technically feasible, what assessable risk is there of failure and how is this affected

by problem complexity?

· what are the client (commercial, governmental, academic, personal) expectations?

· are there specifications, standards, quality parameters and/or procedures that must be used (for example to

comply with national guidelines)?

· how does the research relate to other studies on the same or similar problems?

· what data components are needed and how will they be obtained (existing sources, collected datasets)?

· are the data to be studied (units) to be selected from the target population, or will the sample be distinct in

some way and applied to the population subsequently (in which case, as discussed earlier, one must consider

not just sampling error but study error also)?

When deciding upon the design approach and analytical methods/tools it is often important to identify any

relevant available datasets, examine their quality, strengths and weaknesses, and carry out exploratory work on

subsets or samples in order to clarify the kind of approach that will be both practical and effective. There will

always be unknowns at this stage, but the aim should be to minimize these at the earliest opportunity, if

necessary by working through the entire process, up to and including drafting the presentation of results based on

sample, hypothetical or simulated data. 

Data: In research projects that involve experiments, the data are collected within the context of well-defined

and (in general) tightly controlled circumstances, with the response and explanatory variates being clearly

included in the design of the experiment. In many other instances data is obtained from direct or indirect

observation of variates that do not form part of any controlled experiment. And in survey research, although

there will be a carefully constructed sample design, the level of direct control over variates is typically very

limited. Key datasets are also often provided by or acquired from third parties rather than being produced as part

of the research. Analysis is often of these pre-existing datasets, so understanding their quality and provenance is

extremely important. It also means that in many instances this phase of the PPDAC process involves selection of

one or more existing datasets from those available. In practice not all such datasets will have the same quality,

cost, licensing arrangements, availability, completeness, format, timeliness and detail. Compromises have to be

made in most instances, with the over-riding guideline being fitness for purpose. If the datasets available are

unsuitable for addressing the problem in a satisfactory manner, even if these are the only data that one has to

work with, then the problem should either not be tackled or must be re-specified in such a way as to ensure it is

possible to provide an acceptable process of analysis leading to worthwhile outcomes. A major issue related to

data sourcing is the question of the compatibility of different data sets: in formats and encoding; in temporal,

geographic and thematic coverage; in quality and completeness. In general datasets from different sources

and/or times will not match precisely, so resolution of mismatches can become a major task in the data phase of

any project. And as part of this process the issue of how and where to store the data arises, which again warrants

early consideration, not merely to ensure consistency and retrievability but also for convenient analysis and

reporting. Almost by definition no dataset is perfect. All may contain errors, missing values, have a finite

resolution, include distortions as a result of modeling the real world with discrete mathematical forms,
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incorporate measurement errors and uncertainties, and may exhibit deliberate or designed adjustment of data

(e.g. for privacy reasons, as part of aggregation procedures).

Analysis: The Analysis phase can be seen as a multi-part exercise. It commences with the review of data

collected and the manipulation of the many inputs to produce consistent and usable data. Exploratory data

analysis (EDA), including the production of simple data summaries, tabulations and graphs is typically the first

stage of any such analysis. The impact on research of exceptions — rare events, outliers, extreme values, unusual

clusters — is extremely important. Exploratory methods, such as examining individual cases and producing box-

plots, help to determine whether these observations are valid and important, or require removal from the study

set. This phase then extends into more formal study in order to identify patterns of various kinds that help the

researcher to develop new ideas and hypotheses regarding form and process. And this in turn may lead on to the

use or development of one or more models within a formal build-fit-criticize cycle. Crawley (2007, p339, [CRA1])

provides the following extremely sound advice regarding model selection (echoing a quote attributed to George

Box):

"It is as well to remember the following truths about models: all models are wrong; some models are better

than others [Box said more useful]; the correct model can never be known with certainty; and the simpler a

model the better it is"!

Finally the output of the models and analysis is examined, and where necessary the dataset and data gathering

plan is re-visited, working back up the PPDAC model chain, prior to moving on to producing the output from the

project and delivering this in the Conclusion stage. The application of a single analytical technique or software

tool is often to be avoided unless one is extremely confident of the outcome, or it is the analytical technique or

approach itself that is the subject of investigation, or this approach or toolset has been specifically approved for

use in such cases. If analysis is not limited to single approaches, and a series of outputs, visualizations,

techniques and tests all suggest a similar outcome then confidence in the findings tends to be greatly increased.

If such techniques suggest different outcomes the analyst is encouraged to explain the differences, by re-

examining the design, the data and/or the analytical techniques and tools applied. Ultimately the original

problem definition may have to be reviewed.

Conclusions: The last stage of the PPDAC process is that of reaching conclusions based upon the analyses

conducted, and communicating these to others. Note that implementation of findings (e.g. actually proceeding

with building a bypass, designating an area as unfit for habitation, or implementing a vaccination programme)

does not form part of this model process, but lies beyond its confines. 

“The purpose of the Conclusion stage is to report the results of the study in the language of the Problem.

Concise numerical summaries and presentation graphics [tabulations, visualizations] should be used to clarify

the discussion. Statistical jargon should be avoided. As well, the Conclusion provides an opportunity to

discuss the strengths and weaknesses of the Plan, Data and Analysis especially in regards to possible errors

that may have arisen” Mackay and Oldford (2000)

For many problems this summary is sufficient. For others the conclusions stage will be the start of additional

work: re-visiting the problem and iterating the entire process or parts of the process; a new project;

implementing proposals; and/or wider consultation. In Michelson's case, he was aware of several imperfections in

his research, and in fact spent the rest of his life conducting a series of further experiments in order to

progressively improve the accuracy of his estimate of the true speed of light. A full discussion of this revised

PPDAC model in the context of spatial analysis is provided in the "Chapter 3: Spatial analysis and the PPDAC

model" of de Smith et al., 2018  [DES1], which is available online.

https://mathshistory.st-andrews.ac.uk/Biographies/Box/
https://mathshistory.st-andrews.ac.uk/Biographies/Box/
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2.2 Misuse, Misinterpretation and Bias

A great deal has been written about the misuse of statistics by pressure groups and politicians, by pollsters and

advertising campaigns, by the broadcast media (newspapers, magazines, television, and now the Internet), and

even misuse by statisticians and scientists. In some instances the misuse has been simply lack of awareness of the

kinds of problems that may be encountered, in others carelessness or lack of caution and review, whilst on

occasion this misuse is deliberate. One reason for this has been the growth of so-called evidence-based policy

making — using research results to guide and justify political, economic and social decision-making. Whilst

carefully designed, peer-reviewed and repeatable research does provide a strong foundation for decision-making,

weak research or selective presentation of results can have profoundly damaging consequences. In this section we

provide guidance on the kinds of problems that may be encountered, and comment on how some of these can be

avoided or minimized. The main categories of misuse can be summarized as:

· inadequate or unrepresentative data

· misleading visualization of results

· inadequate reasoning on the basis of results

· deliberate falsification of data

In the subsections of this topic we discuss each of these categories in turn. 

Where data is obtained as the result of some form of trial, experiment or survey, careful design can help avoid

many (but not all) of the problems identified in the first category (see also Design of Experiments and Bias). This

is of particular importance in medical research, and for this reason we have included a separate subsection

focusing on this particular application area and the kinds of problems and issues that are encountered.

A simple example, which occurs only too frequently, is the presentation and interpretation of data where some

data items are omitted. A much reported example of this concerned the analysis of the failure of O-rings on the

US space shuttle in 1986. NASA staff and their contractors examined the pattern of failures of O-rings during

launches against temperature just prior to the ill-fated shuttle launch on January 28 1986. They concluded that

the data showed no apparent relationship between the number of failures and temperature, but as we now know,

the low temperature overnight did result in a failure of these components (see graph below) with catastrophic

results. What the analysts failed to consider were all those launches that had 0 failures. All the launches with no

failures occurred when the ambient temperature at the launch site was much higher, as highlighted in the

diagram (see also, the Space Shuttle dataset and example in the R library, vcd). 

https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster
http://www.r-project.org/
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In a rather different context highlighted in Jan 2010 by BBC journalist Michael Blastland (see also, our

Recommended Reading topic, [BLA1]). Reports of declining teenage pregnancy rates in Orkney off the north coast

of Scotland, were shown to be highly misleading. Blastland showed two graphs. The first appears to show a

halving of the teenage pregnancy rate between 1994 and 2006, following an intensive programme of education

and support:

However, the reports omitted data for the intervening years, and as we know from stock market and many other

types of data, rates of change depend very heavily on your start and end date. The data in this case is actually

quite cyclical, and choosing 2006 rather than, say 2007, provides a completely misleading picture, as the graph

below demonstrates.

http://news.bbc.co.uk/1/hi/magazine/8486221.stm
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In many instances misuse is not deliberate, but leads to biased results and conclusions that cannot be relied upon

and the consequences can be serious. 

Our final example concerns the question of independent sampling. On 2nd February 2010 a UK national

newspaper, the Daily Mail, reported the story of a woman who had bought a box of 6 eggs and found that every

one contained a double-yolk. They argued that because roughly 1 egg in a thousand has a double yolk, the

chances of having a box with every one being double-yolks was one in a quintillion (1 in 1018). It was clearly a

crazy statement that assumed the occurrence of multiple yolks in a box of eggs represented a set of independent

events, and that it was therefore valid to multiply 1:1000 x 1:1000 etc. 6 times. In fact the events are in no way

independent, for a whole variety of reasons. One respondent to a discussion about this example pointed out that

most eggs are boxed in large sorting and packing warehouses, and in some cases eggs are checked against a

strong light source to see if they contain a double yolk. If they do, they are put to one side and the staff often

take these home for their own use, but if there are too many they are simply boxed up, resulting in boxes of

double-yolk eggs.

Inadequate or unrepresentative data

This is probably the most common reason for 'statistics' and statistical analysis falling short of acceptable

standards. Problems typically relate to inadequacies in sampling, i.e. in the initial design of the data collection,

selection or extraction process. This results in the sample, from which inferences about the population are made,

being biased or simply inadequate. The following list includes some of the main situations which lead to such

problems:

· datasets and sample sizes — there are many situations where the dataset or sample size analyzed is simply too

small to address the questions being posed, or is not large enough for use with the proposed statistical

technique, or is used in a misleading fashion. Smaller sample sizes are also more prone to bias from missing

data and non-responses in surveys and similar research exercises. For example, when examining the incidence

of particular diseases recorded in different census districts (or hospital catchment areas etc.) we might find

that for some diseases recorded cases were quite low in rural districts (<10), but were much higher in urban

districts (>100). Does this mean the disease is more likely to occur amongst urban dwellers? Not necessarily, as
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there are more urban dwellers. To remove the effect of differences in the population-at-risk we might decide

to compute the incidence (or rate) of the disease per 1000 population in each district (perhaps stratified by

age and sex). Because of the relatively low population-at-risk in the rural area this might then show the risk

appears much higher in the rural areas. Is the risk really higher or is the result a reflection of the relatively

small numbers reported? Is reporting of cases for this disease the same in rural and urban areas, or is there

some differential in recording perhaps due to differences in the quality of health care available or for social

reasons? For a rare disease, a reported 25% increase year-on-year in the incidence of a particular type of

cancer in the rural district might simply be the result of an increase of a single new reported case. It is also

important to be aware that small samples tend to be much more variable in relative terms than large samples.

This can result in errors in reasoning, as we discuss later in this section (see also: Sampling and sample size).

Large sample sizes are also no guarantee of the quality or lack of bias in the data. One very early failure of a

large dataset was when the US Literary Digest’s postal poll regarding the US presidential election in 1936

received roughly 2.4 million returns. With the aim of achieving as large a sample as possible, the magazine

sought datasets that contained the names and addresses of millions of adults, these primarily comprised

vehicle registration lists and telephone directories. In total, over 10 million letters were posted. However,

despite receiving an impressive number of responses, the poll incorrectly predicted that Landon would beat

Roosevelt. Their data sources are now understood to have produced biased samples that were likely to be of a

higher socio-economic status. The rates of both automobile and telephone ownership were much lower

amongst poorer adults at the time.

· clustered sampling — this issue relates to the collection of data in a manner that is known in advance to be

biased, but is not subsequently adjusted for this bias. Examples include the deliberate decision to over-sample

minority social groups because of expected lower response rates or due to a need to focus on some

characteristic of these groups which is of particular interest — see, for example, the discussion of this issue by

Brogan (1998, [BRO1]). A second example applies where the only available data is known to be clustered (in

space and/or time) — for example, in order to obtain estimates of the levels of trace elements in groundwater

it is often only possible to take samples from existing wells and river courses, which are often spatially

clustered. If the samples taken are not subsequently weight-adjusted (or de-clustered) results may be biased

because some groups or areas are sampled more than others 

· self-selection and pre-screening — this is a widespread group of problems in sampling and the subsequent

reporting of events. Surveys that invite respondents to participate rather than randomly selecting individuals

and ensuring that the resulting survey sample is truly representative are especially common. For example,

surveys that rely on opting in, such as those placed in magazines, or via the Internet, provide a set of data

from those who read the publication or view the Internet site, which is a first category of selection, and from

this set the individuals who choose to respond are then self-selecting. This group may represent those with a

particular viewpoint, those with strong views (so greater polarization of responses) or simply those who have

the time and inclination to respond. Likewise, a survey on lifestyle in the population at large that advertises

for participants in a range of lifestyle magazines, or in fitness studios and sports clubs, is likely to result in a

significantly biased sample of respondents

· exclusions — the process of research design and/or sampling may inadvertently or deliberately exclude certain

groups or datasets. An example is the use of telephone interviewing, which effectively pre-selects respondents

by telephone ownership. If the proportion of exclusions is very small (e.g. in this example, the current

proportion of people with telephones in a given country may be very high) this may not be a significant issue. A

different category of exclusion is prevalent where some data is easier to collect than others. For example,

suppose one wishes to obtain samples of bacteria in the soil of a study region. Areas which are very

http://www.spatialanalysisonline.com/output/html/Declustering.html
http://www.spatialanalysisonline.com/output/html/Declustering.html
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inaccessible may be under-sampled or omitted altogether whilst other areas may be over-sampled. In a

different context, surveys of individuals may find that obtaining an ethnically representative sample is very

difficult, perhaps for social or language reasons, resulting in under-representation or exclusion of certain

groups — groups such as the disabled or very young or very old are often inadvertently excluded from samples

for this reason. Limitations of time and/or budget are often factors that constrain the extent and quality of

data collection and hence relevant and important data may be excluded for reasons of necessity or

expediency. Data may also be deliberately or inadvertently excluded as being probably an error or outlier. In

May 1985 the existence of the huge 'ozone hole' over the Antarctic (depleted levels of ozone at high altitudes)

was documented by research published in Nature magazine: "NASA soon discovered that the spring-time 'ozone

hole' had been covered up by a computer-program designed to discard sudden, large drops in ozone

concentrations as 'errors'. The Nimbus-7 data was re-run without the filter-program and evidence of the

Ozone-hole was seen as far back as 1976." (source: NASA)

The ozone hole over Antarctica, November 2009

Darker/Blue zone indicates ozone level <220 Dobson units; source: NASA https://ozonewatch.gsfc.nasa.gov 

· exclusions, continued — in an extremely thorough UK study of cancer incidence over 30 years amongst

children in the vicinity of high-voltage overhead transmission lines, the authors, Draper et al. (2005, [DRA1]),

appeared to cover every possible factor and issue. However, examining their research unstated questions

(exclusions from the research) soon become apparent: no active participation from patients or their families

was involved, and homes were not visited to measure actual levels of Electro-Magnetic (EM) radiation — this

raises the question 'is home address at birth (which the authors used) an appropriate and sufficiently accurate

measure'? (the authors did not include duration at the address, or where the children went to nursery etc.); is

vertical as well as horizontal proximity to high voltage lines of importance? (they only considered horizontal

distance); is proximity to pylons carrying insulators and junction equipment rather than just the lines an

important factor? (they omitted this issue altogether)

· pre-conceptions — researchers in scientific and social research frequently have a particular research focus,

experience and possibly current norms or paradigms of their discipline or society at large. This may result in

inadvertent use of techniques or survey questions that influence the outcome of the research. A common

https://www.nas.nasa.gov/About/Education/Ozone/history.html
https://ozonewatch.gsfc.nasa.gov
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problem is the wording of questions may lead the respondent to respond in a particular manner. Pre-

conceptions may easily also lead to weak or incorrect reasoning from the data to conclusions

· data trawling — with large multi-variate datasets there is a high probability that statistically significant

findings can be discovered somewhere in the data — brute-force processing of datasets looking for significant

results that relate to a particular area of research interest, with or without explicit pre-conceptions, will often

succeed but may well be entirely spurious. Techniques such as data-mining, cluster-hunting and factor analysis

may all be 'misused' in this way

· temporal or spatial effects — the temporal or spatial sequence or arrangement of samples may be of critical

importance, for many reasons. Examples of temporal effects include: dependence of test results on previous

tests (e.g. in wine tasting); the temporal context of research — responses to questions on a particular topic

may be very different if that topic has had a very high profile in the news in the immediate past (e.g. personal

safety, terrorism, heart disease from too much salt in the diet, attitudes to eating Beef following the BSE/vCJD

scare etc.) — this affects both the nature and the absolute levels (assigned values) of responses; temporal

effects can also be observed in data collected as a sequence using research staff whose accuracy and attention

diminish over time (for example in repeated recording of counts in microscopy; or repeated digitization of data

points, of repeated asking of questions to interviewees). Examples of spatial effects include: location

dependence (for example social groupings in specific areas, types of building, membership of organizations

etc.); local correlation of results due to water, materials or other flows (e.g. contaminant levels in soil samples

at various locations may be related to each other due to groundwater or other localized effects). Missing data

(unsampled or lost data) in the temporal and spatial domains are also very common, especially with automated

monitoring equipment that may fail for brief or extended periods (e.g. the NASA satellite monitoring data for

high-atmosphere ozone levels from 1978 onwards was not available for much of 1995 due to technical

problems)

· over- and under-scoring — the responses individuals provide to questions or tasks often show a distinct bias.

When asked to state how confident the respondent is in the answer they have given, almost always the

confidence level is over-stated, typically by 10-20% based on the relative frequency of correct responses. In

some cultures diligence in completing surveys is taken much more seriously than in others. In one instance the

present author achieved a greater than 100% response rate to a one page questionnaire asking respondents to

list their activities on a given day — in principle impossible, but in fact many respondents photocopied the

questionnaire and completed multiple sheets, even though this was not requested. Such response patterns are

the exception — under-reporting is far more prevalent. In some instances the errors can be detected, for

example by independent measurement or using a separate survey methodology. For example, when asked to

record each telephone call made and its duration, respondents typically under-record the number of calls but

over-score the duration, often rounding up to 1- or 5-minute multiples. The product of this particular over-

scoring of duration and under-scoring of instances is generally close to the call hours (traffic, or Erlangs)

measured using automatic call monitoring equipment, so the effect in terms of traffic estimation tends to

cancel out in this case

· deliberate bias — by judicious selection, combination, arrangement and/or reporting of data (which may have

been extremely carefully collected) is an important and serious area of misuse. Examples include: deliberate

omission of data that does not fit the preconceptions of the researcher, or the conclusions they are seeking;

omission or adjustment of data (this may be acceptable practice in some instances, but should always be made

explicit — for example, exclusion of outliers on the grounds that they appear to be recording errors); and non-

reporting of non-significant results. Examples in the temporal domain include reporting results for selected

time periods, or against selected 'base years' to suggest large changes that may not be of any significance;
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examples in the spatial domain include re-arranging the set of zones for which reporting is being carried out to

increase or decrease a particular level of a variable or correlation — this has a particular historical context in

politics, where the practice has become known as Gerrymandering, and in spatial analysis, where the question

has been studied in detail and is known as the MAUP problem (see further: Statistics and Statistical Analysis)

Misleading visualization of results

To be meaningful a statistical graph or chart should indicate:

· what the scales are 

· whether it starts at zero or some other value, and 

· how it was calculated, in particular exactly what dataset and time period it is based upon

Without all of these elements the information presented should be viewed with caution (as is clear from our

example of teenage pregnancy data in the previous section). Line graphs and histograms that simply show the

neighborhood of the top of the diagram are, in most instances, misleading. Similar issues may arise if not all

intermediate datapoints are plotted, or if data prior to or after the plotted sequence is not shown but would

place the information in a more meaningful and complete context. Likewise, charts that show the change over

time from some base date, must be viewed with caution — changing the base date may significantly alter the

values, even if the broad pattern remains unchanged. The chart below shows the daily closing price of the

NASDAQ 100 stock index from a base value of 100 in late 2002 to late 2009 (7 years data). Clearly some variation

is not visible, whilst within-day fluctuations are not reported. Non-trading days are omitted, which is entirely

valid, so the x-axis is actually not strictly a time scale but is actually an event sequence, so could easily be

numbered 1,2,3... etc. without much loss of interpretation assuming the start date was known. With a base index

of 100 the graph shows a 50% rise over 7 years, but clearly within any given window there are many movements

up and down. A 5 year window (base re-computed as 100 for 5 years data to late 2009) would suggest no change.

NASDAQ 100 stock index history (2002-2009) 

http://en.wikipedia.org/wiki/Gerrymander
http://en.wikipedia.org/wiki/Modifiable_areal_unit_problem
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Similar issues apply to all forms of visualization, indeed increasingly so as automatic creation of static and

dynamic charts, diagrams, classified maps and 3D representations become increasingly widespread. Of particular

concern is the issue of comparability. Visualizations that may be used to compare data from different sources,

datasets, times and/or locations, must be directly comparable in both design and scaling, otherwise comparison is

almost impossible. This applies to both distinct visualizations and those that show super-imposed data. For

further discussion of visualization issue, please see the Graphics and Visualization topic.

Inadequate reasoning

Drawing conclusions from research findings is always a complex process, often subject to debate. The confidence

that can be placed on conclusions will depend, in part, on the nature and quality of the data collected and

analyzed, and the quality of the reasoning applied to the interpretation of the findings. Certain types of

reasoning may appear entirely plausible but on closer examination can be seen as fundamentally flawed. The list

below provides a number of commonly encountered problems of this type.

· Correlation versus causation — it is extremely easy to assume that because there is a close (perhaps highly

significant) relationship between two variables, that one causes the other. This may occur in many ways and

can be quite subtle (obvious examples are much easier to spot). Take the following example: "Girls at single

sex schools do better than girls in mixed schools, therefore single-sex schools are better for girls". Based on

test results in the UK and in a number of other countries the first part of this statement is well documented,

but is the second part, which is a conclusion implying causality, actually correct? Without closer examination it

is difficult to know. Further research shows that other factors are at work: (i) single-sex girls schools are often

fee-paying, and wealthier families tend to have children who achieve higher academic results than less well-off

families (there may be several reasons for this observed finding); (ii) single-sex girls schools are often

selective, requiring entrance exams and/or interviews, thus filtering out groups who might under-perform or

otherwise affect the academic results achieved; (iii) fee-paying schools often have longer days and more

intensive teaching than non-fee paying schools. Put more formally, we can say that the fact that X and Y are

correlated, or vary together, tells us relatively little about the causal relationship between X and Y. So, if X

and Y vary together in some consistent manner, it might be that X causes Y, or Y causes X or that some set of

third variables, Z are involved, such that Z causes X and Z causes Y so that the correlation of X and Y is simply

due to their relationship to Z. Establishing causal relationships beyond doubt can be extremely difficult, but is

often made easier by careful experimental design, thorough analysis of related factors, and repeated,

independent, randomized trials. Recent examples of this kind of inadequate cause-effect reasoning include:

the observation that breast cancer rates are higher in countries that have a high fat content in their diet, and

then suggesting that women who eat more fat in their diet are more likely to suffer from breast cancer; or that

crime rates are higher in areas of high unemployment, and then stating that it is the unemployed who are

responsible for most crimes. The inferences drawn may be valid, and such observations can provide very useful

pointers for research, but the data only provides very tenuous support for the claims made. Sets of "guidelines"

and a number of special statistical methods have been developed over the last few decades that attempt to

provide a formal framework for developing models that seek to pinpoint causal relationships. The formal

methods include Rubin Causal Modeling (RCM), Structural Equation Modeling (SEM), and various forms of path

modeling. These issues are discussed further in the section below on statistics in medical research

· Misunderstanding of the nature of randomness and chance — there are a number of ways in which natural

randomness of events can be misunderstood, leading to incorrect judgments or conclusions. A simple example

is misjudging the effect of sample size. Suppose that a large hospital has 40 births per day on average, with

50% of these being boys. A smaller hospital nearby has 10 births/day, also 50% being boys on average. On some

https://en.wikipedia.org/wiki/Rubin_Causal_Model
https://en.wikipedia.org/wiki/Structural_Equation_Modeling
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days the proportion of boys will be higher, on others lower. Which hospital would you expect to have the most

days in a year with at least 60% of births being boys? The answer is the smaller hospital, because its records

will exhibit inherently more variability — a change from 5 boys to 6 is sufficient to raise the proportion to 60%,

whereas the larger hospital would need to have at least 4 more boys than girls born to result in a 60%+ result,

which is less likely to occur. A second example is the assumption that in a particular sequence of chance or

random events in the past is a guide to events in the future — for instance, the probability that an unbiased

coin toss will result in heads is not affected by the fact that perhaps the previous 10 times it has shown up

tails. It is probable but not certain that sooner or later the tossed coin will come down heads, but that

probability does not change from toss to toss. A similar, and perhaps more disturbing example, is the so-called

prosecutor's fallacy. In this instance a prosecutor calls an expert witness who states that a piece of evidence

(for example, an extremely rare blood group or condition) provides a link to the accused which would only

occur one time in a million. The prosecutor then claims on the basis of this opinion that there is only one

chance in a million that the accused is innocent. But we do not know that the accused is guilty (a presumption

of guilt is not a satisfactory starting point). If we assume the accused is innocent, how many other people in

the population might also demonstrate such a link? The person accused might be guilty, but additional

evidence would be needed before reaching such a conclusion. Readers interested in this particular field should

read the free RSS/ICA Statistics Guide for Lawyers (PDF). This is a highly recommended resource for both

lawyers and non-lawyers alike

· Ecological fallacy — this fallacy involves ascribing characteristics to members of a group when only the overall

group characteristics are known (special statistical techniques have been devised to address certain problems

of this type, for example as discussed in King et al., 2004, [KIN1]). A simple example is the suggestion that

most individuals in a given census area earn $50,000 p.a. based on the census return figure for the area in

question, whereas there may be no individuals at all in this area matching this description — for example 50%

might earn $25,000 p.a. and 50% $75,000 p.a., or many such combinations — from the aggregated data alone is

is simply not possible to know. The problem of statistical grouping of data, described in the previous section

(Statistics and Statistical Analysis, unemployment statistics example) illustrates some of the difficulties

encountered when data is aggregated

· Atomistic fallacy — this fallacy involves ascribing characteristics to members of a group based on a potentially

unrepresentative sample of members. As such it can be regarded as a central issue in statistical research, often

related to sampling that is far too small or unrepresentative to enable such conclusions to be reached

· Misinterpretation of visualizations — there is endless scope for misinterpretation and there are many books on

what makes for good and bad visualizations. The work of Edward Tufte (1983, [TUF1]) is amongst the best at

providing guidance on what makes for good visualization. The emphasis should always be on clarity of

communication, often achieved through simplicity in design and labeling. However, the apparently simple and

clear chart can easily provide scope for confused reporting. For example, the data for the chart below was

cited in the Summer 2007 issue of the USA City Journal in an article authored by David Gratzer M.D., in which

he stated that says the U.S. prostate cancer survival rate is 81.2 percent and the U.K. survival rate is 44.3

percent. This apparently authoritative commentary was then picked up and used by leading US politicians.

There are several problems with this interpretation of the graph. First, the data are from 7 years beforehand.

Second, reported incidence simply reflects diagnosis rates, which in turn is related to the level of screening for

the condition, which at the time was much more common in the USA than the UK. And finally, it is incorrect to

deduce survival rates from the raw data on diagnosis and mortality rates. Survival rates require data that

tracks the date of diagnosis to the lifespan of the individual. In broad terms the five-year relative survival rate

https://www.statsref.com/ICCA-RSS-guide.pdf
http://www.amazon.com/exec/obidos/ISBN=0691012407/
https://www.amazon.com/exec/obidos/ISBN=0691012407/
http://www.amazon.com/exec/obidos/ISBN=0691012407/
https://www.edwardtufte.com/tufte/
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for men diagnosed in England in 2000-2001 was 71% and by 2022 was 85%. More details on survival rates for

Prostate cancer over 1, 5 and 10 years can be found at the Cancer Research UK website

Prostate cancer incidence and mortality per 100,000 males per year
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Deliberate falsification of data

There are occasions when data is deliberately falsified. This maybe as a result of a rogue individual scientist or

group, commercial enterprise and even government agencies. The case of Prof Hwang Woo Suk who published

fraudulent results on human cloning from stem cells in 2006 is one of the most famous (see

https://en.wikipedia.org/wiki/Hwang_Woo-suk), but there is little doubt that deliberate or semi-deliberate

falsification of data is more common than many realize. Deliberate omission of results that show no significant

results or results that do not support a particular hypothesis can be regarded as a form of deliberate falsification

and is a well-established problem in academic and medical research. Recent high-profile "fake news" cases

highlight how modern media and lack of independent scrutiny can result in such issues becoming widely

circulated. 

https://www.cancerresearchuk.org/about-cancer/prostate-cancer/survival
https://en.wikipedia.org/wiki/Hwang_Woo-suk
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2.3 Sampling and sample size

Sampling is central to the discipline of statistics. Typically samples are made in order to obtain a picture of the

population as a whole without the need to make observations on every member of that population. This saves

time, cost and may be the only feasible approach, perhaps because the population is infinite or very large or is

dynamic, so sampling provides a snapshot at a particular moment in time. Ideally we wish to make a sample that

provides an extremely good representation of the population under study, whilst at the same time involving as

few observations as possible. These two objectives are clearly related, since a perfect representation is only

possible if the entire population is measured or if the population is completely uniform. This latter point

highlights the fact that larger and more carefully structured samples may be required to obtain an estimate of a

given quality if the population is highly variable. The difference between the measured value for an attribute in

a sample from the 'true value' in the population is termed sampling error. 

Typically a set of n independent samples are taken based on some form of random selection from the target

population, as far as it is possible to define the latter. Randomness in the selection process seeks to help

eliminate bias, whilst independence of samples also helps to ensure that bias due to samples being associated

with each other in some way is minimized. For example, a sample of leaves from banana trees would seek to take

one sample from each of a large number of banana trees that were relatively well separated spatially. It would

be inappropriate to take 10 different samples from one tree (the samples would not be independent as they all

came from the same tree) and likewise, trees in close proximity may exhibit similarities due to localized effects

(e.g. soil, cultivation practice, disease spread etc.) which may result in samples not being independent. Similar

considerations apply to samples taken from animals or humans, or from soils and rocks, and in some instances,

samples take over a period of time where time dependencies exist. In cases where space- and/or time-

dependencies are thought to exist, tests for autocorrelation should be carried out and, if necessary, sample

design and modeling must explicitly take account of the lack of independence between observations. The

procedure adopted for any particular sampling exercise is known as the sampling protocol, and should always be

carefully planned and designed.

Target Population

The first step in this process is to define the population of interest, from which samples are to be taken. The

population may be finite or infinite, and may be very clearly defined (even if difficult to enumerate) — for

example, "all adults over the age of 18 living in a given city", or may be less well defined — for example

"particulates in the air over London", or "all measurements of outcomes from a particular industrial process".

Ensuring the nature of the population to be studied is well understood is an important step in the initial design of

any sampling scheme. 

Study population

The study population is the collection of units that could possibly be measured (known as the sampling frame in

survey work). In some instances samples are made on a population that can conveniently be studied (for example,

sampling in a laboratory or a particular location) rather than sampling the population itself, with the results being

applied to the real population of interest. This results in so-called study error, which again one seeks to

minimize. In the example cited in The Statistical Method section, Michelson measured the speed of light in air on

the Earth's surface, not the speed of light in a vacuum, so the study error in this case consisted of the difference
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between these two environments. In many studies the research is carried out at a particular time and location,

and the possible effects of temporal and spatial variation are excluded or deemed to have no substantive bearing

on the results. However, all research does take place in space and time, so there is always some study error

related to these factors. For example, after Michelson had completed his research, one criticism of it was that it

was carried out during a brief period of the year, which did not allow for the possibility that the findings would

have been different had the research been conducted 3 or 6 months later (reflecting the different position of the

Earth relative to the Sun). It is often helpful to ensure that the study population is as tightly defined as possible,

thereby ensuring that sampling is only from those individuals or objects that are of direct interest and helping to

restrict variation in measured attributes.

Sampling protocol

This is the detailed procedure followed for sampling the data from the study population. In many instances the

sampling protocol makes use of some level of randomization in order to avoid the risk of bias. The time, location

and possible selection from subgroups of the study population form key elements of the sampling protocol.

Controlled experiments typically involve use of a formal design that seeks to separate explanatory variables into

distinct groups, which are then systematically or randomly sampled. In many instances random numbers are

required in order to select entities, locations or times to be sampled, and typically these are computer-generated

from a uniform distribution over the range [0,1]. Random numbers may also be drawn from other distributions,

either using built-in software functions (e.g. the Excel Data Analysis tools Random Number generator facility, or

SPSS functions of the form RV.DIST which returns a random value from a distribution DIST with specified

parameters), or by using Uniform random numbers in conjunction with the cumulative distribution of interest.

In many instances a sample is required from an empirical distribution or a known (theoretical) distribution with

pre-defined parameters. Typically this involves taking a random sample from the distribution selected or from a

subset (e.g. a range) within this distribution. Many software packages provide facilities for generating such

random samples, which may then be used to compare with observed datasets or as a frame for sampling (see

further, Sampling from a known distribution).

When a large number of records have been obtained and stored in a database, samples from the dataset may be

extracted for analysis rather than analyzing the full dataset (which might consist of thousands or millions of

records). Typically samples of a pre-specified size are selected at random from the stored recordset, with checks

made to ensure that key parameters do not vary too greatly from the population values (i.e. the sample is

representative, not biased). Samples may be taken with or without replacement (without replacement is the

norm) and may be stratified if necessary, depending on the manner in which the data is stored and grouped. Most

statistical software packages provide a range of procedures for record selection. These vary from systematic to

simple random, stratified random where selection probabilities are proportional to stratum size (PPS), and many

variants on these. The table below lists the options provided for SPSS — other packages provide similar facilities.

The documentation for SPSS, SAS/STAT and other packages provide exact details of how the variants (e.g. PPS

Brewer vs PPS Murthy - see further below) are calculated. It is important to note that most standard statistical

formulas assume that records are drawn from an infinite population by simple random sampling without

replacement (WOR). If this is not the case the analytical tools applied must be adjusted to take the data

selection procedure adopted into account. Again, statistical software that facilitates such non-random selection

will also include facilities for computing core statistical measures and simple models adjusted for the sampling

approach adopted.

https://office.microsoft.com/en-us/excel/
https://www.ibm.com/products/spss-statistics
https://www.ibm.com/products/spss-statistics
https://www.ibm.com/products/spss-statistics
https://www.sas.com/en_us/software/stat.html
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Sampling procedures — record selection sampling in SPSS

Simple Random Sampling Units are selected with equal probability. They can be selected with or without
replacement

Simple Systematic Units are selected at a fixed interval throughout the sampling frame (or strata, if
they have been specified) and extracted without replacement. A randomly selected
unit within the first interval is chosen as the starting point

Simple Sequential Units are selected sequentially with equal probability and without replacement

PPS This is a first-stage method that selects units at random with probability proportional
to size (PPS). Any units can be selected with replacement; only clusters can be
sampled without replacement

PPS Systematic This is a first-stage method that systematically selects units with probability
proportional to size. They are selected without replacement

PPS Sequential This is a first-stage method that sequentially selects units with probability
proportional to cluster size and without replacement

PPS Brewer This is a first-stage method that selects two clusters from each stratum with
probability proportional to cluster size and without replacement. A cluster variable
must be specified to use this method

PPS Murthy This is a first-stage method that selects two clusters from each stratum with
probability proportional to cluster size and without replacement. A cluster variable
must be specified to use this method

PPS Sampford This is a first-stage method that selects more than two clusters from each stratum
with probability proportional to cluster size and without replacement. It is an
extension of Brewer's method. A cluster variable must be specified to use this method

Use WR estimation for analysis By default, an estimation method is specified in the plan file that is consistent with
the selected sampling method. This allows you to use with-replacement (WR)
estimation even if the sampling method implies WOR estimation. This option is
available only in stage 1

The above concepts apply, in somewhat modified form, to problems in higher dimensions. In particular, in two

dimensions (spatial data selection) a number of special procedures may be required to ensure that samples are

both randomly selected and yet are also representative (see further, de Smith et al., 2018, section 5.1.2 [DES1]).

As a simple illustration of the kind of approaches that can be adopted, the diagram below shows four methods for

point sampling within a 100x100 unit study region. One interesting and important feature of this example is that

approach B, which is simple random sampling, results in apparent spatial clustering of samples, whilst substantial

areas are left unsampled. Sampling approach C is one means of trying to limit this affect. For more details see

the reference cited.
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Point-based sampling schemes
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Sample size

There are many factors that affect the choice of sample size. In public opinion surveys it is very common to hear

that the sample taken was of around 1000-1500 people. This figure is obtained from a relatively simplistic

calculation, based on achieving an approximately 95% confidence level in the results with estimation of a

proportion, p, within a range of roughly +/-3% (see also, our discussion on confidence intervals). The figure of

1000-1500 arises from these two requirements — using a Binomial distribution the standard error (SE) of the

proportion, p, is Ö(pq/n). Note that the term Ö(pq) is maximized for any given n when p=q=0.5, so this

assumption provides an upper bound of 1/2 on Ö(pq) and thereby on the range of expected variation in our

estimate. Now from the Normal distribution, which is the limit of the Binomial for large n (and a reasonably rapid

approximation if p and q are similar in size), we know that 95% of the distribution is included within roughly +/- 2

standard deviations. Thus the sample size needed to ensure an error in an estimate of x=5% is obtained from the

formula for 2SEs, i.e. 1/Ön. This gives the result n=1/x2 so for x=5%, x=0.05 we have n=400, or for 3% we have

just over 1100. For a 1% range at 95%+ confidence a sample size of 10,000 would be required, so the choice of

1000-1500 is a compromise between the quality of estimation and the cost and time involved in undertaking the

survey. 

For some problems wider bands are acceptable on the estimated proportion or mean, thus for a value within +/-

20% a sample of only 25 is required — if this was an estimate of the concentration of zinc in the soil in parts per

million (ppm), an estimate of 100ppm with a range of 80-120ppm may be perfectly acceptable. This method of

computing sample size is, of course, simply a rule of thumb that has been found to work in many situations of this

particular type. Put more formally, we are estimating the probability, a, that the estimated proportion will not

differ from the population proportion, p, by more than some amount x:

 

  

ˆPr | |p p x

If we denote by z
a

 the Normal distribution probability value for a confidence interval determined by a (e.g. with

a=0.025, two-tailed test, 5% in total, z
a

=1.96) then this (rather simplified) formula for sample size n becomes:





2 2n z pq x

Sample size selection is related to several factors, including: (i) cost, time and risk; (ii) the type of problem being

addressed (and the techniques used to address the problem); and (iii) the variability of the data being sampled. If

one has prior knowledge of the data variability, or can make an informed estimate of this (for example based on

prior research and/or test samples), then the determination of sample size becomes more straightforward.

Clearly greater variability in the data will mean that the standard error (SE) is intrinsically larger, which in turn

requires a bigger sample size for a given level of precision in the parameter(s) to be estimated. Furthermore, if

the population is known to vary in some kind of structured (or stratified) manner, for example spatially or

temporally, then it makes sense to sample less frequently in the less variable phases or zones and more

frequently in those strata of the study population that are more variable. Thus a given overall sample size, n,

might represent the sum of a set of stratified samples {ni}, where each ni is separately determined from the

estimated variance, si, in zone or time slot i. There is an optimal method of determining the component samples

given n, assuming that estimates of the variance in each zone, si, are available together with some measure of

the proportions, wi, of the overall population represented by each of the separate zones or strata. With
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countable items (e.g. census data) these proportions can be obtained as the count in zone i divided by the total

for all zones; other approaches might be to use areas or length of sampled time slots to determine the

proportions. The basic allocation rule is then:

   

 

 

 

1 1
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k k

i i i i i i

i i

n n w s w s w

Note that this allocation simply determines how a given sample size (perhaps obtained with reference to some

cost or time constraint) may be allocated amongst the selected strata. 

Bartlett et al. (2001, [BAR1]) provide a general discussion of sample size determination for educational and social

research, drawing on the earlier work of Cochran (1977, [COC1]). Their guidance draws on the experience of

many researchers conducting questionnaire surveys and similar social research programmes. The formulas

described are based on those discussed above, but take into account issues such as: finite population size;

determination of the estimated variance; dealing with multiple measured variables of various types; and finally,

dealing with non-response. Cochran recommends, for example, that if the sample size, n, exceeds 5% of the

population size, P, then the sample size value should be adjusted by a factor n/(1+n/P). Assuming an initial

sample size estimate of 400 and a population of 4000, this would adjust the sample size down to 364. If the

expected response rate is 60% the sample size is then increased to approximately 600.

A number of statistical tests, such as z-tests and t-tests, yield results that are dependent on the sample size,

through the standard error. The sections that describe these tests also provide guidance on how to compute the

sample size in order to meet requirements on the levels of Type I and Type II errors that are acceptable. Special

graphs, known as Operating Characteristic curves, provide plots of the relationship between sample size and the

two main types of error (see Ferris et. al., 1946, [FER1], for a number of such charts covering c2, F, Normal or z-

tests and t-tests). 

In the medical field a range of sample size guidance documents, tables, software tools and formulas are

available, many of which are effectively variants on the same general model (see Altman [ALT1], Chow, Shao and

Wang [CHO1], Jones et al [JON1], Carley et al.[CAR1], Dupont and Plummer [DUP1], Whitley and Ball [WHI1], and

Machin et al.[MAC1]). Typically sample size estimation in these publications is based on the relationship between

three elements, two involving risk assessments and one involving the size of the effect one is seeking to discover

(small effects require larger samples in order to detect them reliably): (a) the risk of a false positive (a level,

usually taken as 5% or 0.05); (b) the risk of a false negative (b level, usually taken as 20% or 0.20; or using the

notion of power=1-b, so 80%); and (c) the size of the effect. The last item can be difficult to determine, but is

typically of the form: E=(target difference)/(estimated standard deviation). For example, if a study is trying to

detect a difference of size 14 units between a measurement on two equal sized groups (e.g. the blood pressure in

mmHg treated using different therapies, with measurements taken 6 hours after therapy commenced) and the

estimated standard deviation was 18mmHg, then the standardized effect value would be 14/18=0.78. The chart

below, redrawn from Altman [ALT1], enables the required sample size to be read from the central section by

drawing a straight line between locations on the left and right hand axes. The left hand axis shows a measure of

the size of effect one is trying to detect (in standardized units) whilst the axis on the right shows the power of

the test (as noted above power=1-the risk of a Type II error or false negative). The third element, the risk of a

Type I error or false positive is determined by the significance level in the central section. 
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Altman's Nomogram for computing sample size or power (two equal sized groups)

So if an experiment is to be defined that seeks to be able to identify a standardized effect of size 1.0 with a

power of 80% and a risk of a Type I error of 5% we draw the red line (lowest on the nomogram)and choose an

overall sample size of around 32, i.e. a target of 16 participants in each of two groups. If the power is increased

(e.g. to 90%) and/or the effect size reduced (e.g. to 0.6) the required sample size increases to around 60 per

group (120 total — blue line, upper line). For the blood pressure example cited earlier, a total sample size of 52

is required, as shown by the green (middle) line (26x2, based on an 80% power level). Note that this analysis can

also identify trials that are inadequately powered, for example a trial that seeks to identify a relatively small

effect with a sample size that is too small will equate to one whose power is low. Essentially these results are
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based on the use of the (non-central) t-distribution in a t-test for the difference of two means where the

population standard deviation is not known (see further, NIST and Beyer, Table IV.4 [BEY1] — note that these

sources cite the sample size required for a single group).

Some have argued that this model is over-cautious and results in recommended sample sizes that are larger than

are clinically necessary (with important ethical and practical implications), focusing instead on estimation based

on clinical effect (e.g. benefits, harm). A related, alternative approach to sample-size determination, is to

explicitly include measures of cost, in particular attempting to place a cost on each Type of error. The total cost

is then the risk of a Type I error times the cost of this error plus the risk of a Type II error times the cost of this

error plus the cost of the experiment or research exercise. This approach makes a great deal of sense, but

allocating costs in advance to the different types of error can be very difficult. If it is possible to produce such

costs the impact of increasing sample size can be examined. In broad terms as sample size increases the Type I

and Type II errors reduce so the costs associated with these risks will decrease, but the cost of the experiment

will increase and may be infeasible for practical or ethical reasons. Incrementally increasing the sample size may

achieve a result whereby total costs are minimized and this value can then be used for the research exercise. 

Rare events

Particular issues arises in connection with rare events, for example when conducting trials of a vaccine that

protects against a relatively rare disease, or when investigating suspected links between particular cancers and

point sources of environmental pollution. In the former case, it may be necessary to carry out a trial involving

very large numbers of individuals in order to identify a statistically significant effect. This was the case with early

trials of the Salk Polio vaccine in the USA, in 1954, following Polio epidemics in 1952 and 1953. The estimated

normal rate of infection at the time was around 50 per 100,000 population, but this still represented a large

number of people (typically children). To obtain a target of approximately 100 confirmed cases of polio based on

the normal incidence this would require a study group of 200,000 children. In the event, a randomized control

trial (RCT) involving two groups of approximately 200,000 children using a double-blind assignment of subjects

was undertaken — one group being given the Salk vaccine and the other a saline placebo. An extract of the core

results are shown below — the success of the RCT led to the rapid roll-out of the Salk vaccine and then other,

preferred vaccines, in the immediate aftermath, ultimately leading to the virtual eradication of Polio worldwide

today. However, many aspects of the overall trial process were deeply flawed, with a large part of the trial

(which was not in RCT form) described by Brownlee (1955, [BRO1]) as  "futile" and "worthless".

USA Salk Vaccine Randomized Control Trial, 1954, Table 2b extract

Experiment Study Group Population
Polio Cases

Paralytic Non-Paralytic

Randomized
Control 

Vaccinated 200,745 33 24

Placebo 201,229 115 27

source: Francis and Korns (1955, [FRA1],[FRA2])

A simple form of analysis of this kind of data is to compute the effectiveness of the treatment by comparing the

rates of infection per 100,000 in the vaccinated (r1) and placebo (r2) groups. The effectiveness measure is then

E=100(1-r1/r2)% giving a result of E=72% in this case. Data of this kind can be analyzed in a number of different

ways. A simple approach is to consider the probability of observing x=33 or fewer paralytic cases of polio amongst

http://www.itl.nist.gov/div898/handbook/prc/section2/prc222.htm
https://en.wikipedia.org/wiki/Polio_vaccine
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those who were vaccinated as against 115 in the placebo group, both groups having been drawn from large equal

sized populations. Using the null hypothesis that from a total of n=148 severe cases one would expect each group

to have roughly half the total, hence p0=0.5, we can use a simple z-transform of Binomial form:

0

0 0

1/2 33 74 1/2
6.7 ( 0.001)

(1 ) 74/2

x np
z p

np p

   

    



which is a very large (negative) value, hence extremely unlikely to have arisen by chance. By comparison, the

number of non-paralytic cases were quite similar and very likely to have arisen by chance. This is the approach

adopted by Francis and Korns [FRA2, Administrative content section, pp62-63].
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2.4 Data preparation and cleaning

Careful data preparation is an essential part of statistical analysis. This step assumes the data have been

collected, coded and recorded, and now reside in some form of data store. This will often be in the form of a

simple table (sometimes referred to as a data matrix) or SQL-compatible database. Depending on how the data

were coded and stored, variables may or may not have suitable descriptions, coding or data types assigned, and if

not, this is one of the first tasks to carry out. At this stage it will become apparent if any data items are

incompatible with the data type assignments, for example text coded in numeric fields, or missing data that

requires entry of a suitable 'missing data' code. Data provided from third parties, whether governmental or

commercial, should include a metadata document that describes all aspects of the data in a standardized and

thorough manner [UNI1]. 

Analysis of the dataset for duplicates is often the next step to undertake. There may be many reasons for

duplicates existing in datasets, these include: genuine duplicates on one or more variables; data entry errors;

multiple returns for the same case; duplicates on a subset of variables (as opposed to entirely duplicate records);

and duplicates representing deliberate coding to the same reference. Depending on the nature and validity of the

duplicates, decisions have to made on how they are to be treated. In some instances data will need to be de-

duplicated, in others data will be retained unchanged, whilst in some instances additional data will be added to

records to ensure the duplicates are separately identifiable. When analyzing duplicates using Exploratory Data

Analysis (EDA) tools, duplicates may be hidden — for example, point maps of crime incidents frequently under-

represent the concentration of crimes in certain locations as these are often recorded as co-located.

Identification of duplicates may, of itself, be a form of EDA, identifying genuine co-incident results, or perhaps

highlighting data coding protocols (such as assigning particular disease incidence to doctors surgeries or hospitals

rather than the home address of the individual). 

Zero and null (missing data) occurrences form a special group of duplicates that apply to one or more variables

being studied. In many datasets the number of zeros recorded may be very large and their inclusion may totally

distort analysis of the variables in question. Software tools may provide the option to mask out (i.e. hide) zeros

from subsequent analysis. For example, a data collection device might record a value of an environmental

variable, such as wind speed and direction, every 10 minutes. For perhaps 50% of all data items logged the speed

might be below the threshold for measurement with the result that directional information also has no real

meaning. Analysis of the dataset might choose to exclude the zero values from some EDA visualizations and

statistical analyses, as these would overwhelm the results — this is not to say that such data be ignored, but that

it should be separated for some parts of the analysis. 

EDA methods will also tend to highlight exceptional data values, anomalies and outliers (specific measurements

or entire cases) that require separate examination and/or removal from subsequent analysis. Note that this

analysis is taking place on the source data, not post-processed information, although the measurement and

recording process itself may have effectively pre-determined some of the possible characteristics of the source

data (e.g. the coding applied, the resolution of measurement and recording equipment, any systematic data

filtering applied during measurement or recording etc.). 

In the case of outliers, there are several options of how they should be dealt with, and these will depend on the

particular problem and form of analysis being considered. If the outlier is known to be an error (e.g. a mis-

coding, by placing a decimal point in the wrong place) it can be corrected or removed. It may be an event of

great interest, in which case it warrants separate examination and analysis — this again may result in the item(s)

http://en.wikipedia.org/wiki/Metadata
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being removed from the rest of the dataset. It can also be altered in a systematic manner, for example: changing

the value to be 3 standard deviations from the mean; "Winsorizing" the value, whereby it is amended up or down

to the adjacent value in a sorted series; or effectively excluded by computing statistics based on forms of

trimmed measures, such as the trimmed mean.

Once a dataset has undergone preliminary inspection and cleaning, further amendments may be made in order to

support subsequent analyses and the use of specific statistical models. It may be desirable for such amendments

to result in the creation of a new data table or data layer, thereby ensuring that the source data remains

untouched and available for re-inspection and analysis. In some instances (very large datasets) it is preferable to

extract a representative sample of records and then apply modifications to this extracted set. Data in this new or

modified layer may be subject to re-coding, grouping into new groups or classes, and/or apply some form of data

transformation (for example applying a transformation to a continuous variable to improve the fit to the Normal

distribution). A very large number of transformations are possible, many of these being supported in standard

statistical analysis packages. For certain data types (such as temporal and spatial datasets) a specialized set of

transformations are used, which reflect the serial and neighborhood aspects of such data. For example, with

temporal data, various forms of temporal averaging, seasonal adjustments and filtering may be applied, whilst in

spatial analysis such changes may be based on local, focal or zonal computations (see further, de Smith et al.,

2018, [DES1]).
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2.5 Missing data and data errors

Missing data is a wide-ranging term for the absence of expected data from a recorded sample, which may occur

for many reasons and in many ways. In can be a small, easily managed problem, or a larger problem that raises

questions about the usability of the dataset. Missing data can involve all relevant data for a record or set of

records, or it could be missing values from a set of measurements relating to individual records (incomplete

records). Each different situation requires separate consideration, both as to the seriousness of the problem, and

to the means by which such difficulties are to be addressed. In the following paragraphs we discuss some

examples of the key issues and approaches to resolving them. We then look in more detail at some of the

techniques and tools provided within statistical software packages that are designed to assist in these situations.

In sample surveys the most common reasons are non-response, partial responses (only some questions answered)

and spoiled responses. Surveys may be structured to ensure sample sizes are increased to a level at which the

target response is achieved taking into account non-response and unusable responses, although this can be

difficult when the survey involves quotas (e.g. the study must include responses from 50 women between the

ages of 40 and 60, 50 between 60 and 80, and so forth). In general it is very difficult to avoid the problem that

sample surveys or trials will yield incomplete response data, particularly where there are many questions or

variables being examined. Such problems can lead to biased results and need to be addressed as early as possible

in the overall data collection design and implementation phase of a project. Missing data may also be

encountered when an experiment or trial is undertaken and unforeseen circumstances make some of the data

unusable or impossible to obtain. For example, the present author conducted a controlled trial of three different

types of multi-lingual keyboard in the European Commission headquarters in Brussels. A total of 96 staff were

recruited (48 for week 1, 48 for week 2) to undertake computer-controlled typing tests in a variety of real and

synthetic languages. All test sessions were completed with no data losses until one morning the building was

picketed and attacked by French farmers protesting against proposed changes to the Common Agricultural Policy.

They entered the building and were only removed after tear gas was used, which in turn shut down the lower

levels of the building and our morning's data session was lost! Fortunately the exercise included enough

replicates, including a complete replicate of the entire experiment in week 2, so analysis of the results was only

marginally affected (see Evans, 1988 [EVA1]). In trials of medical procedures one or more of those involved in the

trial may be unable to complete the trial due to illness or other, unrelated factors, or maybe one sample

becomes contaminated or is not of the correct strength, so the data has to be discarded. This may be all the data

relating to one or more participants in the trial, but more commonly relates to one or data items relating to a

case — for example, a missing test result. Datasets that rely on remote-sensing equipment frequently

demonstrate missing data, when equipment fails or has to be taken out of use temporarily for servicing or other

reasons. 

For certain experiments and analyses, such as some randomized block designs, loss of even a single data item is

important because it upsets the balanced nature of the design and its subsequent analysis. Where observations

are unavailable for a single unit this may be partially overcome by estimating or imputing the missing data from

the remaining information, thereby turning the unbalanced design back to a balanced form. For example, in a

randomized block design (see further, Cox, 1958 [COX1]) with k blocks and t treatments a simple estimate for a

single missing value is given by (kB-tT-G)/(k-1)(t-1) where B is the total of all remaining observations in the block

containing the missing observation, T is the total of observations on the missing treatment, and G is the grand

total. This provides a simple form of averaging for a single missing value — least squares techniques or simple

iterative estimation can be used to extend the concept to more than one missing value. Analysis then continues
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as if the estimated value or values were genuine, but with residual degrees of freedom reduced by 1 for each

missing value and a correction for bias applied to the total sums of squares in the Analysis of Variance

computation. Likewise, in time series analysis, complete time series are almost always required, making analysis

of incomplete temporal datasets very problematic. Where such data is missing at the start or end of a series, it

may be sufficient to simply ignore this problem and analyze the data that is available, assuming that it can be

regarded as representative of the entire period. However, if embedded values (i.e. within the series) are missing

some form of estimation is often the only option. 

Another common reason for missing data is incorrect data recording, coding or subsequent processing. The precise

reason for such errors and the scale of the problem are important to determine. Incorrect data coding by

researchers and data preparation staff can often be checked through systematic verification, for example by

taking a sample of each block of survey returns and having these independently recoded and compared with the

original coding. Incorrect interpretation of survey questions, or incorrect recording of data by surveyed

individuals, needs to be identified through inspection and validation techniques, thereby identifying the scale

and nature of any problems, and implementing changes or corrections to the data gathering and/or subsequent

processing of the data. The widely publicized issue of data quality associated with the Climate Science Unit (CSU)

at East Anglia University in the UK (see https://en.wikipedia.org/wiki/Climatic_Research_Unit_email_controversy

and the IPCC dataset site: https://www.ipcc-data.org/ ) provides a vivid insight into some of the issues

associated with collating and cleaning datasets from multiple sources on a range of variables over a prolonged

period of time.

Minor errors and occasional items of missing data can often be handled programmatically, but in some cases such

approaches are not sufficient and the data and project will have to be reviewed in the light of the data

limitations. Many software packages include facilities to handle problems with data completeness. The most

common arrangement is for data to be coded to identify missing values, for example using a distinct entry such as

a blank " ", * or -999 to indicate a missing value, depending on the data type and range being recorded. When an

entry of this kind is encountered, the software package will apply one or more rules in order to determine what

action to take. For example, in computing basic statistics for quantitative datasets it may simply ignore missing

values (as opposed to deleting records with missing values) and carry out the computation on the available

subset, with a reduced count of items. This raises the question as to whether such estimates are biased. 

It is not merely the scale of missing items that must be considered, but also whether there is any pattern to the

missing data. If the missing values occur completely at random (MCAR) and the proportion of missing values is not

large (<5%) then statistics such as mean values, variances, correlations etc. can be produced ignoring these

missing values and the results will tend to be unbiased. However, if the missing values are not randomly

distributed throughout the data, bias will be apparent. It is possible that the non-randomness of missing values is

partial, in the sense that within groups the missing values occur randomly but between groups there are

substantial differences. This might be observed in cases where one group in more likely to respond to a question

or to perform a task than another group. If the data show missing at random (MAR) data within groups but do not

conform to the MCAR requirement, it is still possible to produced unbiased statistics within these groups. It may

also be possible/acceptable to fill in missing values with estimated values that are derived from the remaining

data in the entire study or subsets of the study — this applies principally to quantitative data in univariate and

multivariate data sets, and to temporal and spatial datasets. 

In order to determine whether MCAR, MAR or neither apply, the dataset can be partitioned and subject to various

forms of simple pattern analysis and statistical comparisons. For example, all records could be divided into those

with and without a data value on a given variable, and a comparison statistic (such as Little's chi-squared test,

https://en.wikipedia.org/wiki/Climatic_Research_Unit_email_controversy
https://www.ipcc-data.org/
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[LIT1, LIT2]) computed to try and detect any significant differences between the two subsets. Having identified

the scale and nature of the missing data problem, the question then arises as to what action to take. If the

sample size is large enough and the proportion of records with missing data is small, it may be acceptable to

either ignore the missing values (especially if the MCAR or MAR tests indicate that this is very safe to do), or to

delete/ignore entire records with missing values (generally an unsafe practice, as this tends to introduce

additional bias), or to impute the missing data (see further, below) from the remaining records. In this latter case

missing data are essentially 'invented' by reference to other data in the sample. Typically results are then

reported with and without the imputed data, with a clear explanation of the impact of imputation on the

results. 

There are many techniques for such imputation, notably maximum likelihood and a variety of regression methods.

Pure multiple regression methods tend to underestimate the true variance of the imputed data values, so some

form of variance inflation may be added to overcome this limitation. So-called multiple imputation (MI) methods

are now favored by some researchers since these appear to provide more representative and robust results (see

further, Pickles, 2005, [PIC1]). MI methods involve some form a conditional simulation, producing several

imputations (typically 5-10) and then using the mean of the results as the estimates for the missing values.

Alternatively the entire analytical procedure can be carried out on each of the versions of the dataset, and the

results from each analysis averaged or compared. Typically such methods will compute the mean and variance of

the variable across records for which complete data is available and then sample random values from the Normal

distribution matching these parameters to obtain sample values for the missing item. Some packages, such as

SAS/STAT, perform MI using samples obtained via MCMC methods (essentially this involves using the remaining

data as a model distribution for the missing data and randomly sampling from this model distribution). For

categorical data samples are taken from a Multinomial distribution. Another approach, which is sometimes usable

with categorical data, is to create a new category that contains those records that include missing data.

Similar concepts have been applied in temporal and spatial analysis, both as a form of missing data analysis and

as a form of prediction or estimation for unsampled times and locations. For example, the use of conditional

simulation is now a preferred form of prediction in geospatial engineering applications, such as oil and mineral

prospecting. If there are very few missing data points in dense temporal or spatial datasets it is usual for these to

be estimated using deterministic procedures, using linear, bi-linear or spline interpolation from their immediate

or near-neighboring data items, or using simple mean or median values in the local neighborhood. The quality of

imputed results can be evaluated by comparison with the entire dataset (e.g. convergence of parameters), by

internal consistency checks (e.g. jackknifing and bootstrapping techniques) and/or by reference to external

datasets and samples (e.g. so-called 'ground truth' comparisons).

Handling missing values — techniques and tools

This section provides a brief summary of the main approaches for handling missing values. In most instances these

are procedures offered within software packages, but it remains the responsibility of the researcher to select the

method used and to document and justify such selection when reporting the results of analysis. In many cases

estimating missing values will apply to real-valued measurements, but some procedures may apply to binary or

categorical data. 

Ignoring entire records

This is the most commonly available approach for handling missing data. As noted above, this is only acceptable if

the number of records is relatively large, the number of records with missing data is relatively small (<5%), and

https://www.sas.com/en_us/software/stat.html
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the missing records can be shown to occur completely at random (MCAR) or are missing at random (MAR) within

well-defined subsets of the data. In general this approach cannot be used in small sample balanced trials nor for

time series.

Setting missing values to fixed value

Many packages allow missing values to be replaced with a fixed value (e.g. 0) or a user-provided value for each

instance. The problems of adopting these approaches are obvious.

Single estimation procedures

A very common approach to missing values is to use some form of estimation based on the characteristics of the

data that has been successfully collected. For example, the SPSS Transform operation, Missing Values option,

offers the following options for estimating such values: (i) use of the mean or median value of nearby points (by

which it means neighboring records, with the number of such records used selectable by the researcher); (ii) use

of the overall series mean, i.e. the mean based on all records; (iii) linear interpolation, which applies to data in

series and uses the two adjacent non-missing values, to fill in the gap or gaps; (iv) linear regression, which is

similar to linear interpolation but use a larger number of neighboring points and calculates a best fit line through

these as its estimator for intermediate missing values. Other software packages may provide additional options —

for example, a variety of model-based interpolation options are available in the SAS/ETS (Economic and Time

Series) software. Similar procedures are provided in some other packages, but often it remains the researcher's

responsibility to provide or compute estimates for missing values as a part of the data cleaning and preparation

stage.

Multiple imputation (MI)

Multiple imputation (MI) methods vary depending on the type of data that is missing and the software tools used

to estimate (impute) the missing values. In this subsection we describe the approaches adopted by the SAS/STAT

and SPSS software, which are largely based on the published work of Rubin (1976, 1987, 1996 [RUB1],[RUB2],

[RUB3]). 

Essentially there are 3 stages to MI:

· the missing data are filled in m times to create m complete datasets (m is typically 5)

· the m complete datasets are analyzed separately, in the usual manner

· the results from the multiple analyses are combined in order to provide statistical inferences regarding the

data

Depending on the type and pattern of missing data, SAS/STAT and SPSS will generate estimates for the missing

values using some form of regression analysis of the valid data (single, multiple or logistic regression), or MCMC

methods under an assumption of multivariate Normality, for more general missing values. The latter approach is

of the general form: (a) initialize estimates for the missing values for all records and variables by drawing random

values from a Normal distribution with mean and variance that match the non-missing data (or use a multinomial

distribution for categorical data, with proportions in each class defined by the proportions in the non-missing

data); (b) using all the data, except for missing data on the jth variable, use a univariate method (e.g.

regression) to impute the missing values in that variable; (c) iterate across all variables and track the

convergence of both the mean and variance of the imputed missing values.

https://www.ibm.com/products/spss-statistics
https://www.sas.com/en_us/software/stat.html
https://www.ibm.com/products/spss-statistics
https://www.sas.com/en_us/software/stat.html
https://www.ibm.com/products/spss-statistics
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When the datasets are analyzed the results are combined to produce a single set of inferences together with the

between and within imputed dataset covariances. As Rubin (1996, p476, [RUB3]) explains, the posterior

distribution of the data obtained following multiple imputations is simply the average of the individual

imputations, the mean values are the means of the imputations, and the variances are the sum of the average of

the individual variances obtained from the MI process plus the variance of the mean values obtained. 
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2.6 Statistical error

When approaching any form of data analysis many types and sources of error may be considered: the data

collection procedure may contain errors; there may be gross data capture or encoding errors; there may be errors

in the approach adopted to selecting data, designs or in analysis. However, none of these relates to the rather

special use of the term statistical error. This term refers specifically to non-systematic or random errors that are

observed during measurement. There may be many reasons why such random variations occur, but in general the

assumption is made that these reasons are unknowable and therefore cannot be readily removed. Systematic

variations and gross errors can, at least in theory, be separated out and either accounted for or removed, leaving

simply statistical error. 



Statistical data 83

https://www.statsref.com (c) 2018-2024

2.7 Statistics in Medical Research

Statistical methods as applied to problems in medical research are, at first sight, no different from the

application of such methods to any area of scientific endeavor. However, there are some important societal and

technical aspects of medical research that warrant particular attention. At the societal level the issues relate to

the impact on individual patients of intervention procedures, treatments and their side effects. The conduct and

interpretation of medical trials is an extremely important issue, and decisions made regarding who is to be

treated and how, and who is not to be treated, are often complex and can be distressing for all involved.

Furthermore, inadequate design, implementation and reporting of trials can lead to erroneous conclusions, with

potentially serious consequences. On a technical level there are specific techniques and protocols that have been

developed to address many of these issues, but there remains continuing difficulties facing medical staff who

need to understand and use appropriate statistical procedures whilst having an enormous number of other issues

to deal with. Again, these problems can be addressed by early involvement of medical statisticians, although the

scarcity of experienced specialists in this field is an additional concern. There is also an ongoing debate regarding

the appropriateness of classical frequentist statistics, and even Bayesian statistics to many problems in medical

research, bearing in mind the practical complexities and uncertainties associated with such work, especially for

observational studies.

In 1937, the editor of The Lancet, writing in the foreword of Austin Bradford Hill's groundbreaking book

"Principles of Medical Statistics" [BH1] summarized the position of statistics in medicine at that time as follows:

"In clinical medicine today there is a growing demand for adequate proof of the efficacy of this or that form

of treatment. Often proof can come only by means of a collection of records of clinical trials devised on such

a scale and in such a form that statistically reliable conclusions can be drawn from them. However great

might be our aversion to figures, we cannot escape the conclusion that the solution of most of the problems

of clinical or preventative medicine must ultimately depend on them"

Bradford Hill sought to provide an easily understood introduction to statistical concepts and methods for medical

students, and his book [BH1] continued to be updated and published in many editions and in many translations,

over a period of forty years. He was particularly concerned to ensure that the foundations of medical research

benefited from sound underlying logical analysis and testing. To this end he was one of the initial proponents of

randomized controlled trials (RCTs), which provide a key framework for current medical research exercises. In

addition he devised a series of viewpoints on how suspected cause-effect relationships can be evaluated. Both of

these areas are discussed in more detail below. 

Bradford Hill was also extremely influential in bringing the idea of cohort studies to the fore through his work

with Sir Richard Doll on the link between smoking and lung cancer. Their initial research was based on a case-

control approach, but they then extended this work to a cohort study of over 30,000 British doctors. Cohort

studies typically involve tracking the medical histories of a select group or cohort of individuals over many years.

For example, in 2010 an international cohort study known as COSMOS was launched. The UK COSMOS cohort will

follow the health of approximately 100,000 mobile phone users (18+ years old) for 20-30 years, and the

international cohort will follow approximately 250,000 European mobile phone users over this period. 

Considerable efforts have been made by many specialists with the aim of improving the understanding of

statistics by medical professionals and in ensuring the quality of reporting in journal publications is of the highest

standard (see especially, the excellent article and associated discussion in Altman and Bland, 1991 [ALT1], and

the extensive set of short "Statistics Notes" by Altman, Bland and colleagues available via the British Medical

http://www.ukcosmos.org
https://www.bmj.com/specialties/statistics-notes
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Journal and more directly via Professor Bland's web page). The quality of published studies has been greatly aided

by the production or adoption of guidelines by individual journals, and by the development of "statements" that

explain how different types of research exercise should be reported. Perhaps the most important of these is

CONSORT: "Consolidated Standards of Reporting Trials", which encompasses various initiatives to alleviate the

problems arising from inadequate reporting of randomized controlled trials (RCTs). We discuss CONSORT further

below. Other examples of such statements include STROBE "Strengthening the Reporting of Observational studies

in Epidemiology", and the EQUATOR network, which is an international effort that seeks to "improve the

reliability and value of medical research literature by promoting transparent and accurate reporting of research

studies". Their 'reporting guidelines' section includes links to many useful websites and articles, including those

already mentioned, and articles such as Olson et al. [OLS1] on the reporting of case-control studies.

As mentioned earlier, undertaking and reporting of medical research requires many specialized skills. Historically

there has been insufficient training of medical researchers in statistical concepts and methods, and very real

problems of communication between medical and statistical specialists. For example, the terms significance,

variance and frequency may have a very different meaning to medical staff from those assigned by statisticians.

To medics significance has the more usual interpretation of 'being significant' or important in the context of the

medical problem under consideration — indeed, statisticians and medical journals now often play down the use of

the term and the associated use of statistical significance levels (p-values). Estimation (identifying the typical

range of values/effects) is rightly regarded as being of far greater relevance. For those involved in case-mix

management (CMM) analysis of variance may refer to financial management (variation from targets) rather than

having any statistical interpretation, whilst frequency can refer to how often a patient visits the toilet! As with

many disciplines, technical terminology unfortunately may serve to confuse rather than clarify the subject.

There is no simple answer to these problems, although modern undergraduate and post-graduate teaching

practice attempts to address the most important issues in a manner that medical specialists are likely to respond

to and retain, long after the brief courses given have been completed. The leading medical journals, key medical

reference web sites, the early involvement of medical statisticians, statistical consultancy and peer review,

recently published precedents and the application of sound methodologies (such as the PPDAC model discussed

earlier in this Handbook) will all serve to assist those engaging in medical research and trials for the first time.

The technical statistical procedures applicable to medical research are covered in the various main topics and

sections of this Handbook. However, there are one or two specific topics that warrant further comment at this

juncture. The two we have focused upon are Causation, and the Conduct and Reporting of Research. Each of

these topics is discussed briefly in the subsections that follow. 

An equally important topic, which is of particular relevance to medical research, is that of Bayesian analysis. We

discuss aspects of Bayesian analysis at several points in this Handbook (e.g. see Yudowsky's example of breast

cancer screening). Whilst not excluding classical frequentist statistics, a substantial number of scientists believe

that Bayesian thinking is essential in the medical sphere — as Professor Campbell states in his commentary on

Altman and Bland's paper (see also [CAM1]):

"Many doctors have an 'a priori' belief that the patient either has or does not have the disease and use the

Bayesian paradigm to modify their beliefs. They find the idea of a null hypothesis existing without any

probability attached to it counter-intuitive"

Other authors, including the leading Bayesian statistician Professor David Spiegelhalter, argue that for some

problems only a Bayesian approach can provide a sensible answer, or in some instances, any answer at all.

https://www.bmj.com/specialties/statistics-notes
https://www-users.york.ac.uk/~mb55/pubs/pbstnote.htm
https://en.wikipedia.org/wiki/Consolidated_Standards_of_Reporting_Trials
https://www.strobe-statement.org/
https://www.equator-network.org/
https://www.sheffield.ac.uk/scharr/people/staff/mike-campbell
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We now take a closer look at the thorny question of causality, and how suspected cause-effect relationships can

be identified and studied. We then consider some aspects of the conduct and reporting of medical research,

including randomized controlled trials (RCTs), case-control studies and cohort studies. These procedures are a

particular feature of modern medical research and RCT in particular is a development that has been largely

championed in the medical statistics field.

References

[ALT1] Altman D G, Bland J M (1991) Improving Doctors' Understanding of Statistics. J of the Royal Stat. Soc., A, 154(2), 223-267

[BH1] Bradford Hill A (1937) Principles of Medical Statistics. The Lancet, London (issued in various editions until 1971. Then

republished as "A Short Textbook of Medical Statistics" in 1977

[BH2] Bradford Hill A (1965) The Environment and Disease: Association or Causation? Proc. of the Royal Soc. of Medicine, 58, 295-

300. A copy of this article is reproduced on Tufte's website: https://www.edwardtufte.com/tufte/hill 

[CAM1] Campbell M J, Machin D, Walters S J (2007) Medical Statistics : A Textbook for the Health Sciences. 4th Ed., John Wiley &

Sons Ltd, Chichester

[OLS1] Olson S H, Voigt L F, Begg C B, Weiss N S (2002) Reporting participation in case-control studies. Epidemiology,13(2),123-6

2.7.1 Causation

In our earlier discussion of the problems associated with using and interpreting statistical data we described some

of the difficulties involved when trying to establish and model causation. As Rothman et al. (2008, p5 [ROT1])

observe:

"such a model should address problems of multifactorial causation, confounding, interdependence of effects,

direct and indirect effects, levels of causation, and systems or webs of causation"

In medical statistics the word cause is often used in a probabilistic sense, i.e. by suggesting that factor A is a

cause of outcome or disease B, we often mean that A significantly increases the risk or probability of outcome B.

This lack of specificity reflects an underlying uncertainty about the detailed processes at work. Hence recognizing

that a particular chemical is carcinogenic does not explain the processes that lead from exposure to incidence of

the condition — these processes are likely to be extremely complicated involving molecular biology, and may be

difficult if not impossible to determine.

In a famous paper delivered by Austin Bradford Hill to the Royal Society of Medicine in 1965 [BH2], he suggested a

series of viewpoints (his terminology) by which one might use as guidance when seeking to establish the nature

and validity of a suspected causal relation. In this subsection we summarize what has now become known as the

Bradford Hill Criteria, although the term criteria was not used in his paper. He commences with the assumption

that a clear-cut association (or correlation) of some kind has been observed. This association does not need to be

one that is determined as statistically significant — in fact, Bradford Hill argues strongly against the blind use of

statistical significance in this context. In addition and as noted above, the causal relationship may in fact be

complex, as for example in a causal chain, or in an effect that may be the result of multiple (i.e. different)

causal factors or the result of several factors working in combination. Bradford Hill's nine viewpoints for

examining possible causal effects are, in summary:

https://www.edwardtufte.com/tufte/hill
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Bradford Hill's (1965) 9 Viewpoints for Causation

1. Strength: if an association is very strong it deserves closer consideration than weaker associations — for

example, if we observe that heavy smokers are 30+ times more likely to contract lung cancer than non-

smokers, the strength of evidence is more powerful than if we observed that they were only 2x as likely to

contract lung cancer. In fact it was Bradford Hill who first brought this particular relationship to public

attention. On the other hand, lower strength of evidence does not imply that there is no causal relationship

2. Consistency: is the observed association repeated/repeatable, in different locations, at different times and

under differing circumstances? As above, the absence of such repeatability does not imply that there is no

causal relationship — for example, it may not be possible to repeat a set of circumstances

3. Specificity: if the observed association appears to be highly specific to a given set of circumstances and/or

locations, then it is more likely to be related to these circumstances in some causal manner. For example, the

very high incidence of certain diseases amongst individuals working in very specific environments (e.g.

chimney sweeps and felt hat makers in the 18th and 19th centuries; Nickel refinery workers in the early 20th

century). A somewhat different example is the incidence of pre-menopausal breast cancers where a high

number of cases has been observed within particular families across the generations, suggesting a specific

genetic effect

4. Temporality: here the question is whether the order is A®B or B¬A. For example, is being extremely

overweight causing people to contract a particular disease or condition, or do people with a particular

condition become extremely overweight. These kinds of relationships can be quite subtle and inter-connected

5. Biological gradient: if increased exposure to some well-defined hazard is associated with a similarly increase

in disease incidence, then this tends to support a causal relationship, as compared with a relationship for

which no 'gradient effect' is observed

6. Plausibility: if the suspected causal relationship is plausible, within the scope of current knowledge, then it

has (marginally) more merit than a relationship for which no known explanation can be proposed. Having

made this observation, it is clearly a relatively weak criterion

7. Coherence: if the suspected causal relationship is consistent with current knowledge about the variables

involved, it may help to support (or at least, not to detract from) the possible causal relationship being

considered. Again, as with plausibility, this may be regarded as a relatively weak criterion

8. Experiment: if one or more repeatable controlled experiments can be carried out to test the suspected

causality, and these tests support the hypothesis, this greatly enhances the strength of evidence case

9. Analogy: if a similar causal relationship has been established, but under different circumstances, it may again

provide support for the argument that a causal relationship exists, but again this is a weak criterion

These 9 viewpoints have been taught to students in the biomedical sciences for many years, often as criteria

rather than as broad guidance. More recently authors such as Phillips and Goodman [PH1] have re-emphasized the

original 'lessons' of Bradford Hill, in particular his skepticism regarding the use of statistical significance. In their

commentary they summarize these missing lessons as:

· Statistical significance should not be mistaken for evidence of a substantial association

· Association does not prove causation (other evidence must be considered)

· Precision should not be mistaken for validity (non-random errors may exist)
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· Evidence (or belief) that there is a causal relationship is not sufficient to suggest action should be taken

· Uncertainty about whether there is a causal relationship (or even an association) is not sufficient to suggest

action should not be taken

In preparing these bullet points the authors were particularly concerned to address the question of systematic

errors or bias, which we have previously seen can be complex and inadvertently introduced, thereby confusing

both intuitive and statistical inference. They also emphasize the importance of the relationship between causal

analysis and the subsequent decision making regarding policies such as screening, interventions and vaccination.

These policies exist in a much broader framework of political and economic considerations, requiring weighted

cost-benefit and risk-based assessments, whatever the apparent strength of evidence may be from causal

analysis.

Evans (1976, (EVA1]) focused on identification of cause-effect relationships for diseases, rather than the

generality of such relations. His "criteria for causation" table, developed as a form of unification of the ideas and

research by many authors over the previous century, but curiously without reference to Bradford Hill, is provided

below (with his italics):

Evans' (1976, Table 13) 10 Criteria for Causation

1. Prevalence of the disease should be significantly higher in those exposed to the putative cause than in cases

[or] controls not so exposed

2. Exposure should be present more commonly in those with the disease than in controls without the disease

when all the risk factors are held constant

3. Incidence of the disease should be significantly higher in those exposed than in those not exposed as shown in

prospective studies

4. Temporally, the disease should follow exposure with a distribution of incubation periods on a bell shaped

curve

5. A spectrum of host responses should follow exposure along a logical biological gradient from mild to severe

6. A measurable host response following exposure should regularly appear in those lacking this before exposure

or should increase in magnitude if present before exposure

7. Experimental reproduction of the disease should occur in higher incidence in animals or man appropriately

exposed than in those not so exposed; this exposure may be deliberate in volunteers, experimentally induced

in the laboratory, or demonstrated in a controlled regulation of natural exposure

8. Elimination or modification of the putative cause or the vector carrying it should decrease the incidence of

the disease

9. Prevention or modification of the host's response on exposure should decrease or eliminate the disease (e.g.

immunization, application of statins to reduce cholesterol), and

10.  Sense: the whole thing should make biologic and epidemiological sense

There are a number of formal and informal tools and procedures that may be utilized to assist in the analysis of

the relationships between supposed causes and effects (i.e. in addition to purely statistical approaches). In many

fields, including medical research, structured diagrams are often helpful, for example the use of traditional graph
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theory such as the work of Greenland et al. [GR1, ROT1] which uses the analysis of directed acyclic graphs (DAGs)

to help identify and understand cause-effect relationships and confounding. A number of authors in the medical

field have also used the Ishikawa or fishbone diagram as an aid to identifying the components and structure of

causation particularly in the context of quality management and policy making. Formal structured review

procedures, such as brainstorming and Delphi techniques, and of course the entire peer review process for

research work and publications, collectively provide a range of mechanisms for obtaining the best possible

understanding of possible cause-effect relationships.
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2.7.2 Conduct and reporting of medical research

When planning any substantive piece of medical research, especially where human patients are involved, great

care in the design of the research is required. Whilst the PPDAC methodological framework described above has

broad applicability to such problems, there are specific considerations that make such exercises in the medical

arena particularly problematic (e.g. see the discussion in Ercan et al., 2007 [ERC1]). Many of these are addressed

through adoption, where practicable, of a procedure known as randomized controlled trials, or RCTs. In its

simplest, and most widely used form, the RCT is a relatively straightforward procedure — at least, in theory!

Other widely used forms of medical research include case-control studies and cohort studies. All three of these

procedures are described in greater detail in the subsections that follow.

Assuming a trial or other form of study has been designed and is undertaken, the question of reporting all steps in

the process is paramount. In recent years there has been a great deal of effort put into standardizing the

registration of the details of trials (essentially metadata), and into structured reporting. This has been led by the

academic community in association with all the major medical journals, and has led to a series of "statements"

that are designed to both assist and direct the conduct of trials. Journals such as Annals of Internal Medicine,

http://en.wikipedia.org/wiki/Acyclic_directed_graph
https://en.wikipedia.org/wiki/Ishikawa_diagram
https://www.edwardtufte.com/tufte/hill
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BMC Medicine, BMJ, Journal of Clinical Epidemiology, the Lancet, Obstetrics & Gynecology, Open Medicine, PLoS

Medicine and Trials have all adopted and published guidelines for reporting randomized trials under the CONSORT

or "Consolidated Standards of Reporting Trials" initiative. CONSORT 2010 is the latest version of these guidelines,

and comprises specifically the process of reporting what was done and what was found (i.e. it does not include

recommendations for designing, conducting or analyzing trials). Essentially CONSORT consists of a checklist for

publication which covers: Title and abstract; Introduction; Methods; Randomization; Results; Discussion and Other

information. It also includes a flow diagram "of the progress through the phases of a parallel randomized trial of

two groups", which we have included below. More details can be found on the EQUATOR NETWORK website and in

the references below. There are also a number of extensions to the CONSORT statement that provide guidance

for different forms of trials, such as cluster trials (e.g. where treatments are applied to clusters, such as

members of a family) and a number of other forms of trial.

https://en.wikipedia.org/wiki/Consolidated_Standards_of_Reporting_Trials
https://www.equator-network.org/
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CONSORT 2010 FLOW DIAGRAM

As noted above, RCT's are by no means the only, or always the best or most appropriate framework for the

conduct of medical trials. In many instances the 'ideal' of a controlled experiment is not achievable, and many

other forms of research are also widely used — for example cohort studies and case-control studies. However, the

great advantage of RCT's is that they have been shown, within the strict confines of the trial in question, to be

the best means for avoiding bias and minimizing confounding effects, enabling conclusions regarding the

differences between outcomes to be made with a relatively high degree of confidence.
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2.7.2.1 Randomized controlled trials

The randomized controlled trial (RCT) is generally accepted as the preferred approach to conducting a wide

variety of medical trials and is a central technique in the broader field of evidence-based medicine. The

advantages of the approach are many, but in particular they have been shown to be very effective in controlling

for selection bias and confounding, which other procedures may fail to achieve. In order to explain the central

ideas behind RCTs, we start by providing a brief description below of the steps involved in the very first RCT,

which was designed to determine the effectiveness of a new treatment for tuberculosis (TB).

The first step when designing an RCT is to carefully define the problem to be studied. Ideally this definition

should be easily understood and as narrow as is practical. In the British Medical Research Council's (MRC) study of

tuberculosis treatments in the late 1940s, the trial (of the effectiveness of streptomycin as a treatment) was

defined by restricting it to: "acute progressive bilateral pulmonary tuberculosis of presumably recent origin,

bacteriologically proved, unsuitable for collapse therapy, age group 15 to 25 (later extended to 30)" [BH1;

Ch.20, and [MRC1]). This particular trial was the first truly randomized clinical trial and this aspect of the trial

was devised by Austin Bradford Hill — he himself had been diagnosed with TB and spent two years in hospital and

a further two years convalescing from the disease in his early 20s.

The second step, in the most commonly applied form of RCT, is to consider two distinct groups, ideally of

approximately equal size and make-up. In the tuberculosis trial 55 patients were given the new treatment

(Streptomycin plus bed rest) whilst a separate group of 52 patients were just given bed rest. One group is the

https://www.edwardtufte.com/tufte/hill
https://www.strobe-statement.org/
https://en.wikipedia.org/wiki/Consolidated_Standards_of_Reporting_Trials
https://www.equator-network.org/
https://en.wikipedia.org/wiki/Randomized_controlled_trial
http://en.wikipedia.org/wiki/Evidence-based_medicine
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treatment group (or intervention group) whilst the other is the non-treatment group or control group. By non-

treatment we mean that this group receives a placebo (i.e. a tablet or preparation that is not a drug at all and

has no physiological effect on the patient), or no treatment, or continues on an existing, established treatment

programme — the approach chosen must be precisely defined.

The patients selected to be involved in the trial are then randomly allocated to one of the two groups and their

progress monitored over a period of time (usually relatively short). Most RCTs now carried out follow this general

approach. There are other variants, notably cross-over RCTs, where patients are randomly assigned to groups but

are then randomly re-assigned so they receive a sequence of treatments or non-treatments. 

In the case of the 1948 tuberculosis trial the results after 6 months were as follows:

Streptomycin Control 

Considerable
improvement 

28 (51%) 4 (8%)

Lesser
improvement or
deterioration

23 (42%) 34 (65%)

Deaths 4 (7%) 14 (27%) 

This finding was regarded as being an important breakthrough, both in terms of the success of the treatment,

which was clear to see, and statistically significant (i.e. is extremely unlikely to have occurred by chance). After

12 months a further 8 of the treated patients had died, and a further 10 of the control group, again a significant

result, but also indicating a reduced efficacy of the treatment over time. None of the patients, however, could

be regarded as having been cured. Interestingly enough, at the time the authors did not report why they chose

the sample sizes used. In a remarkable recorded interview in 1990 Bradford Hill, then aged 93, stated that the

main reason for choosing 50 or so patients was that this was as much Streptomycin as could be obtained from the

USA at the time given its scarcity, high cost and the considerable problems in obtaining US currency in the UK in

the immediate post-WWII period. He also stated that the patients were not informed about the treatment they

were to receive (i.e. there was no "informed consent" which is nowadays an absolute requirement for such trials).

The authors also do not describe what form of statistical analysis was performed, merely that the results were

statistically significant — the impression one has from Bradford Hill's book is that simple chi-square tests were

carried out.

In order to carry out random assignment of patients to groups, the researchers who were treating the patients in

the trial allocated patients themselves to the trial groups using random numbers, but this method can lead to

problems. An example is given by Cancer Research UK:

"it is possible to be biased without realizing it. For example, if a new treatment has quite bad side effects,

the doctors running the trial might subconsciously avoid putting sicker patients into the group having the

new treatment. So as the trial went on, the control group would have more and more of the sickest patients

in it. The people in the new treatment group would then do better than the control group. So, when the trial

results come out, the new treatment would [incorrectly] look as if it works better than the standard

treatment."

To avoid such problems a system known as blinding is applied. In blind trials one or more parties are unaware of

the assignment of treatments. For example, in a so-called single-blind trial the individual receiving the treatment

is not made aware whether the treatment they are being given is an existing treatment, a new treatment or a
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placebo. In double-blind trials neither the experimenter nor the patient know which treatment has been assigned

to which patient (treatments are coded) thereby minimizing the risk of any influence the experimenter may have

on the experiment. Unfortunately this terminology is not uniformly applied, leading to current recommendations

to describe in detail the kind of blinding applied (if any), even extending to those involved in analysis and

interpretation of the results. 

Whilst the RCT procedure described above appears simple and straightforward, it does have difficulties.

Determining the appropriate sample size to use can be problematic, especially in the case of rarer conditions

and/or where suitable triallists are simply not available in the location or at the period of time required (see the

earlier discussion on sample size, and in particular, the Salk Polio vaccine trials of 1954). It is clear that sample

size and retention of participants needs careful thought and prior research to determine the sort of effect that

the treatment or intervention might have and the size of effect that would be considered clinically useful (and

therefore worth powering the trial to detect). To achieve the required sample size it is quite usual for a trial to

be run with several participating centers in different parts of the country, or even to be international, with

participating centers from several countries. 

The cost of conducting RCT trials may be high, and if the trial is interrupted during its structured program, or

there are problems with adverse effects or triallists dropping out, how are the results to be interpreted? Sample

size determination can be difficult and it may not be possible to obtain the desired numbers in each group and

stratum or to obtain the overall desired sample size if it is far larger than is achievable within time and cost

constraints. Having an appropriate sample size is an ethical issue because too small a trial is unlikely to give a

useful result, so cannot justify the cost and patient time involved, and too large a trial similarly wastes money

and patient time. There may also be other ethical problems — for example, should a particular treatment that is

thought to be very promising be withheld from very sick patients? (see further, the Declaration of Helsinki).

Despite these reservations, RCTs do provide the "gold standard" for conducting many types of medical trial, and

have provided to be extremely successful including in trials involving complex interventions — see for example

John et al. [JOH1], Kinmonth et al. [KIN1] and the BUMPES (Birth in Upright Maternal Position) Trial [BUMPES].
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2.7.2.2 Case-control studies

Case-control studies involve investigations that are essentially retrospective in nature, since they involve the

study of patients who have acquired a disease or condition, and comparing these cases with so-called 'controls'

whose profile is similar to the cases. By similar we mean that the controls have not exhibited the condition under

investigation but have considerable similarities with those who have — for example, they have the same age/sex

mix, they live in the same area, do similar work, attended similar schools etc. In some instances case-control

studies involve multiple control groups, but more typically there is one group of cases and another of controls. As

with other forms of medical research procedures, we provide an example below to illustrate the typical

application of this approach. In this example we consider the analysis of data relating to the incidence of a

particular disease amongst individuals who have been exposed to some infectious agent, substance or

environmental factor which is suspected as being causative. The simplest model is to assume that the row and

column totals are known and fixed and then to apply Fisher’s exact test to the results. This model evaluates the

hypothesis that the results show no association between disease incidence and exposure and is a simple and clear

procedure. 

Example:  Esophageal cancer cases in Brittany

In the example table below we show the incidence of esophageal cancer amongst males in part of Brittany in

France (205 cases) and a sample of 770 males (the controls) selected at random from the local electoral lists in

the same region. Examining the tabulated summary results we see that the odds of being a high consumer of

alcohol for cases is 96:109 (i.e. almost 1:1) whereas for controls the ratio is 104:666 (around 1:7). The odds ratio

is thus (96/109)/(104/666)=5.64. Put another way, the data suggest that you are at least 5 times more likely to

suffer from esophageal cancer if you are a heavy drinker than if you are a more moderate drinker. To place this

into context, a 125ml glass of 8% strength wine (very weak, most wines are 12-13%) equates to 10gms of alcohol

or one unit (in international measure), with the current recommended daily maximum consumption being 2 units

for women (20mg) and 3 units (30mg) for men.

Alcohol
consumption

80+g/day <80g/day Total

Cases a=96 b=109 205

Controls c=104 d=666 770

Total 200 775 n=975

This data and its analysis is discussed in detail in Breslow and Day (1980, [BRE1]). The lower case letters identify

the notation used in many studies, with the odds ratio being computed simply as ad/bc.

We can compute Fisher’s exact statistic for this 2x2 table, and the chi-square approximation, on the hypothesis

that the entries are independent. The chi-square statistic yields a value of 110.26 (unadjusted) or 108.22 with

Yates adjustment, both highly significant. The exact test, using Fisher’s method as implemented in R, also

confirms that the result is highly significant and also provides the odds ratio, as above, together with a 95%

confidence interval for this ratio of [3.94,8.06]. These values are the so-called Cornfield confidence intervals

(Cornfield, 1956, reported in Breslow and Day [BRE1]). These statistical tests can be seen as test of the

hypothesis that the odds ratio equals 1 against the alternative that it is greater than 1. 

http://www.r-project.org/
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The data under discussion have been greatly simplified — detailed information which is available has been

summarized in a 2x2 table. Whilst this is helpful and demonstrates an apparently very strong relationship

between the incidence of this type of cancer with high alcohol consumption, it disguises potentially important

information and possible confounding factors. For example, it was known that the individuals in the control data

in this study were, on average, 10 years younger than the case data. Since alcohol consumption may vary with

age, perhaps an age-related confounding factor exists. Indeed, since the ages of cases and controls are known,

the data could be stratified by age group and each stratum analyzed separately. The odds ratios for each group

can be computed and compared to see how homogeneous these are, assuming sufficient data exists at each

stratum level for such a comparison. Likewise, the division of alcohol consumption into two levels rather than

more is somewhat arbitrary, thus analysis of cases and controls could be extended to obtain a more detailed

picture of this relationship (with or without age-based stratification). Clearly as the number of levels and strata

are increased, so the cell entries will diminish and without relatively large samples the scope for detailed

breakdowns of this type will be limited. Also, the Fisher test for tables with more than a 2x2 arrangement is

typically implemented using simulation methods. Finally, the dataset also collected information on tobacco

consumption — perhaps the strong relationship observed for alcohol consumption is actually not causative but

indicative of lifestyle. By including tobacco consumption levels as well as alcohol consumption, for cases and

controls, estimates of relative risks (by age group) can be obtained. 

The above study, dating from more than 40 years ago, contrasts with larger scale more recent studies, such as

the case-control study of smoker-related deaths in India. The authors (Jha et al., 2008, [JAH1]) describe their

methodology as follows:

In a nationally representative sample of 1.1 million homes, we compared the prevalence of smoking among

33,000 deceased women and 41,000 deceased men (case subjects) with the prevalence of smoking among

35,000 living women and 43,000 living men (unmatched control subjects). Mortality risk ratios comparing

smokers with nonsmokers were adjusted for age, educational level, and use of alcohol.... In this age group

[30-69], smoking was associated with an increased risk of death from any medical cause among both women

(risk ratio, 2.0; 99% confidence interval [CI], 1.8 to 2.3) and men (risk ratio, 1.7; 99% CI, 1.6 to 1.8). Daily

smoking of even a small amount of tobacco was associated with increased mortality. Excess deaths among

smokers, as compared with nonsmokers, were chiefly from tuberculosis among both women (risk ratio, 3.0;

99% CI, 2.4 to 3.9) and men (risk ratio, 2.3; 99% CI, 2.1 to 2.6) and from respiratory, vascular, or neoplastic

disease

In both of the above analyses controls were not tightly matched to cases — for example, their age profile and

possible other important factors, were not matched other than at a broad level. In some instances carefully

matched controls can be identified which generally increases the power of the analysis. Typically more controls

than cases are identified, and analysis proceeds either by taking the first or a randomly selected matched control

from a set, or by combining the controls as if they represented a single individual. Procedures for analyzing

matched controls, which are variants of those described above, are covered in Breslow and Day [BRE1]. For more

complex problems it may be preferable to apply techniques based on logistic regression, with unmatched or

matched samples.
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2.7.2.3 Cohort studies

Cohort studies primarily consist of the selection of a group of individuals (the cohort) and studying aspects of

their development over many years, possibly several decades. In particular, disease incidence and mortality of

the cohort are studied. As with case-control studies and randomized control trials, the unit of analysis is the

individual, i.e. macro-level relationships amongst groups (i.e. population correlation or ecological studies) are not

the basis for research in any of these methods. At the start of the process members of the cohort are recruited,

generally with a carefully constructed profile that is designed to embrace the study population of interest, and

detailed interviews are conducted to learn relevant information about their background, health history, lifestyle

etc. Further interviews and/or questionnaires are then conducted every few years over the course of the project.

The great advantage of this approach, which is known as a prospective cohort study, is that information about

the individuals is well documented and all subsequent disease incidence is recorded, in many cases up to

eventual death. However, this may take a long time and may exhibit only a few cases of the specific disease or

diseases of interest unless a very large cohort is used, which increases the cost and complexity of the project.

Retrospective or historical cohort studies seek to identify a group or cohort with known exposure to a suspected

agent, and then attempt to reconstruct the history of exposure and related data in order to obtain an

understanding about current disease incidence and mortality patterns. This approach has the advantage that data

is available relatively quickly and without excessive expense, may be the only possible approach (for example if a

substance or circumstance no longer applies), but is subject to many practical problems — notably missing data

and recall problems.

Prospective cohort studies may be compared with a case-control approach, for which cases are selected from

those with a disease of interest, controls are selected, and the two datasets are compared. For example, in the

very first major cohort study, that of British Doctors commencing in 1951, some 34,440 male doctors were

recruited to the study, and after 20 years total incidence of lung case deaths was 441. This compares with a case-

control study that commenced in 1948 and was completed in 1952, with 4342 people being involved and 1488

being lung cancer cases. The advantages of case-control studies for identifying possible relationships of

importance is clear, and they are much faster and typically less costly to conduct, but they are severely limited in

the degree of confidence in the nature of the relationship and by their reliance on recalled information. With a

cohort study an improved understanding of the relationship between exposure, lifestyle and outcomes is possible,

including effects not previously identified. For example, in the British Doctors study it was apparent, after 20

years, that the death rate amongst heavy smokers from all causes was twice that of non-smokers. In this example

the level of long-term successful follow-up of the cohort was very high, but in other studies this has not been the

case. Unless the results are available for a very high proportion of the cohort, the validity of the results may be

called into question.

In summary, Breslow and Day [BRE2] identify the following advantages of cohort studies as compared with case-

control studies. Cohort studies:

· Give a wider picture of the health hazards associated with a given exposure
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· Eliminate most forms of selection bias and recall bias

· Are often the only practical option where exposure to specific agents (e.g. suspected hazardous industrial

chemicals) is rare

· In addition to detailed interviews or questionnaires, medical tests can be carried out at the start of the cohort

study that may aid interpretation of outcomes, for example in terms of prior susceptibility to certain conditions

· Repeated measurements over the lifetime of the study may be possible and important — for example,

measurements of specific chemicals present in blood or urine samples

· Absolute risk rates are obtained for the cohort, as opposed to relative risk rates for case-control studies.

However, if the cohort is not representative of the broader population these risk estimates cannot be extended

without reservation

An additional aspect of cohort studies is the fact that they can look at length of survival, rather than simply the

outcome at a single time point (see for example, Svensson et al., [SVE1], where the authors analyzed the survival

rate of patients with bone cancer after 1, 3 and 5 years ). 

Historically, most attention has been focused on mortality whereas more recently interest has been shown in a

combination of severity of various conditions (e.g. chronic illnesses) and the detail of dose-response relationships,

both of which are more demanding in terms of data (e.g. obtaining an understanding of multi-factor effects) and

analytical methods. For dose-response analysis much emphasis is placed on fitting alternative models to data

collected over time, using various forms of time series analysis to help model, and thereby predict, safe exposure

or dose levels in absolute and temporal terms. 
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2.7.2.4 Meta analysis

In order to increase the power of a test it may be possible to examine many similar studies and combine their

findings into an overall analysis, thereby increasing the effective sample size. The advantages of this approach

are obvious, in that existing published and peer-reviewed research from separate studies around the world can be

combined to strengthen the analytical process. Special statistical techniques have been developed to support

meta-analysis [BOR1], and graphics such as the forest plot (see below) have been designed to clarify both the

similarities and differences between the separate studies. The problems associated with the approach are also

self-evident: different studies will inevitably have been produced under differing circumstances, on different

groups of subjects, with varying levels and types of control; and only published studies tend to be compared, so

there is a (significant) risk that a bias towards studies that show results, rather than no-result studies, are

combined (see Goldacre, [GOL1], for a lengthy discussion of this issue); likewise there is a risk of selection bias,

whereby only studies that confirm a hypothesis are selected, again resulting in potentially serious distortion of

the results.
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The following forest plot was produced using the R function forestplot() in the rmeta meta-analysis package using

data from the highly influential Cochrane Collaboration ("Cochrane", www.cochrane.org). The data comes from 7

randomized trials before 1980 of corticosteroid therapy in premature labor and its effect on neonatal death

(corticosteroids are given to women in premature labor help the babies' lungs to mature and so reduce the

number of babies who die or suffer breathing problems at birth). The plot shows the odds ratio (OR) and 95%

confidence intervals in each study, together with an estimated combined (summary) odds ratio computed using

the Mantel-Haenszel OR fixed effects method [MAN1]. This is simply a form of weighted version of the standard

odds ratio ad/bc applied to each of k tables, where the sample sizes are the ni values (the fixed effects

assumption involves regarding each study as evaluating the same overall treatment effect):
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The overall OR in this case is 0.53, and the width of the diamond shows the confidence intervals for this

estimate, which are [0.39,0.73]. Where the odds ratio is less than 1 (the vertical line shown) it indicates that the

treatment (in this case the use of steroids) reduces the chances that the baby will die — in this example, by

approximately 50% as a best estimate. Each line on the forest plot relates to a separate trial, and smaller trials

are shown with longer horizontal lines to indicate that they are less certain of their results (the width of possible

OR values is greater). As can be seen, several trials have horizontal lines that cross the OR=1 (no effect) line, so

taken individually the impression is given that use of these steroids may well not be effective. However, by

combining all the trials the beneficial effect of treatment becomes clear.

An overall random effects model and summary is also available in the rmeta package, which in this case produces

the same OR estimate of 0.53 but a slightly wider confidence interval: [0.37,0.78]. The random effects model,

due to DerSimonian and Laird (DSL), assumes that there is random variation in treatment effects and estimates

the mean and variance of the effect. The scale illustrated is logarithmic with limits set at [0.1,2.5] and the

arrows indicate that the confidence intervals extend beyond these limits, i.e. the limits have been clipped or

trimmed (software packages vary on the methods used to compute confidence intervals for combined studies).

The box size illustrated is based on the study precision.

http://www.r-project.org/
https://www.cochrane.org
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Forest Plot — Seven Randomized Controlled Trials — Cochrane dataset — Fixed effect (MH)
model

The latest version of this Cochrane Review, which combines the findings from 21 studies, can be obtained from

the Cochrane website https://www.cochrane.org .

Forest plots can be used in a variety of ways — for example, in the 2004 collaborative study of European case-

control studies into the levels of radon in homes and the associated risk of death from lung cancer [DAR1], the

authors displayed the results from 13 studies with stratification for age, sex, smoking habits and cancer histology,

with the horizontal scale indicating the percentage increase in the risk of lung cancer per 100Bq/m2 of measured

Radon (i.e. not an OR plot in this instance). A subset of their plot is shown below:

https://www.cochrane.org
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Radon and Lung Cancer — percentage increase in risk per 100Bq/m2 of measured Radon
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